
MATH 8210, FALL 2011 LECTURE NOTES

MIKE USHER

1. Multivariable calculus without coordinates

The objects of study in this course are what are called “smooth manifolds.” For the time being I won’t give
a precise definition of these (it will come later, or of courseyou can easily look it up), but for now suffice it to
say that these are topological spaces which locally resemble Euclidean space and in which, in particular, it is
possible to do something resembling calculus. The surface of the Earth is (to good approximation) an example
of a two-dimensional smooth manifold. Of course, the Earth is notR2 but rather a closed surface (I was going to
say a sphere, but then it occurred to me that if one looks closely enough there are some rock formations which
cause the genus to be positive), yet locally it looks enough like R2 that it seems reasonable to speak for instance
of the directional derivatives of a function (the temperature, say) defined on the Earth.

So how can we formulate calculus in such spaces? Part of the definition will be that a manifoldM will have
an open cover{Uα|α ∈ A} by sets equipped with homeomorphisms (“charts”)φα : Uα → Vα whereVα ⊂ R

n is
open. So we can try to do calculus onM by, roughly speaking, doing standard multivariable calculus in the open
setsVα and then transporting the constructions back toM by the mapsφα (or their inverses). However, ifm ∈ M,
thenm will typically belong to several of the setsUα in the open cover ofM, and one needs to make sure that
one’s constructions don’t depend on which of the charts one is using. To compare between theαth chart and the
βth chart, one needs to look at the “transition function”

φβ ◦ φ
−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ).

This is a map between two open subsets ofRn, and part of the definition of a smooth manifold will ensure that
the map is smooth (i.e., C∞) and invertible (with a smooth inverse), but there won’t be any restrictions on what
φβ ◦ φ

−1
α other than that. So for example it doesn’t make sense to “takethe partial derivative of a function onM

with respect to the first coordinate,” since although we can differentiate a function onVα with respect to the first
coordinate, or we can do the same for a function onVβ, these operations won’t be equivalent when we try to lift
them up toM using the mapsφα, φβ.

So this makes it important to understand how notions of multivariable calculus behave under the action of
diffeomorphisms(i.e., smooth maps with smooth inverses)φ : U → Ũ whereU andŨ are open subsets ofRn.
You should think of the action of such a diffeomorphism as being the same as changing one’s coordinate system,
e.g. from Cartesian coordinates to polar coordinates. In particular I want to first discuss various notions of what
a tangent vector at a point p∈ U is. (And we’ll later generalize this to the notion of a tangent vector at a point
in a smooth manifold.) Visually you’re supposed to think of atangent vector atp as being a little arrow whose
base is atp, pointing in a possible direction of motion fromp. The set of these tangent vectors will form a vector
space called thetangent space to U at pand denotedTpU. I’ll give three characterizations, from most concrete
to most abstract.

(1) The way to describe this notion that is used in undergraduate multivariable calculus courses is just to say
that a tangent vectorv at p ∈ U is (or is represented by) an n-tuple of numbers (v1, . . . , vn) ∈ Rn. One
can then draw the vector whose base is atp and whose first coordinate isv1, second coordinate isv2, and
so on. (In somewhat more sophisticated language, the standard Cartesian coordinates onRn determine a
basis{e1, . . . ,en} of unit vectors, and one hasv =

∑
viei .)

1
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This characterization is very good for computational purposes, but when one is interested in how
tangent vectors behave under coordinate changesφ : U → Ũ it has some disadvantages. The tangent
vectorv = (v1, . . . , vn) ∈ TpU should correspond under the coordinate changeφ to a tangent vector
φ∗v ∈ Tφ(p)Ũ at φ(p). Perhaps you’ve learned how this correspondence works: one constructs the
Jacobian matrix atp of the mapφ (with (i, j) entry given by∂φi

∂x j
whereφi is the ith component ofφ),

and then the coordinates ofφ∗v are obtained by multiplying the Jacobian matrix by the vector consisting
of the components ofv. This is a manageable computation, but it may not be very conceptually clear
from this discussion what’s going on here. In particular if we then want to say what a tangent vector
to a pointm on a smooth manifold is we’d have to say something like “ann-tuple of numbers for each
chart containingm, such that then-tuples for different charts are related by the Jacobians of the transition
functions,” which is much more opaque and less natural-sounding than it really should be.

(2) A more natural characterization of tangent vectors is the following. The idea is that the tangent space
TpU consists of all possible velocities of curves passing through p. If p ∈ U, consider allC∞ paths
γ : (−ǫ, ǫ) → U (for someǫ > 0) such thatγ(0) = p. I would like to declare two of these to be
equivalent if they have the same velocity,i.e., γ1 ∼ γ2 iff γ′1(0) = γ′2(0) (or equivalently, and maybe
less circularly,γ1 ∼ γ2 if lim t→0

γ1(t)−γ2(t)
t = 0). Then simply define a “tangent vector” atp to be an

equivalence class [γ] of C∞ arcs throughp (and soTpU is just the set of equivalence classes). The way
this behaves under coordinate changes is extremely simple,since I’m not using coordinates to define the
notion: a tangent vectorv ∈ TpU has the formv = [γ] for someγ, and the corresponding tangent vector
φ∗v ∈ Tφ(p)Ũ is just [φ ◦ γ]. We’ll see later that this adapts to general smooth manifolds very simply and
directly—a tangent vector at a point on a smooth manifold willjust be a suitable equivalence class of
curves passing through that point.

The one disadvantage of this characterization is that it’s not so intuitively obvious how to do algebraic
operations (like addition of tangent vectors) on equivalence classes of curves through a point (though
you can make a suitable definition if you put your mind to it).

It shouldn’t be hard to construct a natural correspondence between tangent vectors in this sense and
tangent vectors in the sense of Definition (1) above, but again, the advantage of thinking about it this
way is that it’s less coordinate-dependent.

(3) Now for a characterization of tangent vectors that you almost certainly would not have thought of. To
attempt to motivate it, note that a given tangent vectorv ∈ TpU gives you the ability to differentiate
smooth functionsf : U → R at p—namely you take the directional derivative atp:

(Dv f )(p) = lim
t→0

f (p+ tv) − f (p)
t

.

So we will definea tangent vector atp to be “a way of differentiating functions defined nearp,” i.e., we
will abstract some relevant properties of the operation of taking a directional derivative, and then define
a tangent vector to be one of these operations.

To do this, first consider pairs (f ,V) whereV is an open neighborhood ofp and f : V → R is
C∞, and declare two such pairs (f ,V) and (g,W) to be equivalent if there is a smaller neighborhood
Z ⊂ V ∩ W of p such thatf |Z = g|Z. Let Op be the set of equivalence classes. Since we can set,
for instance [f ,V] · [g,W] = [ f g,V ∩W], Op is easily seen to be a commutativeR-algebra (i.e., it is
both a commutative ring and a vector space overR, with appropriately compatible operations), called
the “algebra of germs of functions atp.” I’ll tend to denote a germ by justf rather than [f ,V]; it
is to be understood thatf is defined not necessarily throughoutU but rather on some (varying) open
neighborhood ofp. Of course one always has a well-defined valuef (p) for f ∈ Op.

A tangent vector atp will then be defined to be aderivation v: Op→ R, i.e. v is to satisfy
• (R-linearity)v(c f + g) = cv( f ) + v(g) for c ∈ R and f ,g ∈ Op

• (Leibniz rule)v( f g) = f (p)v(g) + g(p)v( f ) for f ,g ∈ Op.
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It’s standard that the directional derivative operationsDv alluded to above satisfy these properties. It’s
not obvious that, conversely, any derivation onOp is given by a directional derivative in some direction,
but we’ll prove this shortly.

Like the characterization of tangent vectors as equivalence classes curves, this formulation is com-
pletely coordinate free, making it easy to extend the definition to manifolds when the time comes. Unlike
the situation with curve characterization, though, it’s quite obvious that derivations form a vector space,
which is another advantage.

To see how this notion behaves under diffeomorphisms (or indeed under more general smooth maps)
φ : U → Ũ, if v ∈ TpU (i.e., if v is a derivation onOp), we need to construct a derivationφ∗v onOφ(p).
Well, if f ∈ Oφ(p) (really we should write [f ,V]), so f is a smooth function defined nearφ(p), then f ◦ φ
will be a smooth function defined nearp (specifically, it will be defined on the open setφ−1(V) around
p), and so we can define

(φ∗v)( f ) = v( f ◦ φ)

So as with the curve formulation, it’s quite simple to see howderivations transform under coordinate
changes.

Among the three above characterizations of tangent vectors, it should be clear that (1) is equivalent to (2),
under the correspondence which assigns to an equivalence class of curves [γ] the vectorγ′(0) (expressed in
coordinates using the standard basis forRn). We now set about proving that (1) and (3) are also equivalent.
Let TpU denote the space of tangent vectors as given by formulation (1) (i.e., as elements ofRn) and (for the
moment)T̃pU that given by (3) (i.e., as derivations). Write the coordinates ofp ∈ U ⊂ Rn as (p1, . . . , pn). Now
we have a linear mapα : TpU → T̃pU given by

α(v1, . . . , vn) =
n∑

i=1

vi
∂

∂xi
,

i.e., α sends a vector (in the undergraduate multivariable calculus sense) to the operation given by directional
differentiation in the direction of that vector. We claim thatα is bijective, justifying our proposal to regard (3) as
an equivalent definition of the tangent space atp. It should be clear thatα is injective. Indeed, for eachi we have
an elementxi − pi ∈ Op, and we see that, whereβ : T̃pU → TpU is given by

β(v) = (v(x1 − p1), . . . , v(xn − pn)) ,

we haveβ ◦α = 1 (as ∂
∂xi

(x j − p j) = δi j ). Thusα is injective, andβ surjective. To see thatα is surjective, we note
the following, wheneverv ∈ T̃pU:

• v(1) = v(1 · 1) = 1v(1)+ 1v(1) = v(1)+ v(1). Hencev(1) = 0, and so byR-linearity v(c) = 0 for every
constant functionc.
• For anyi and j, if f ∈ Op we have

v
(
(xi − pi)(x j − p j) f

)
= (xi − pi)|pv((x j − p j) f ) + (x j − p j)|p f (p)v((xi − pi)) = 0.

• By the multivariable Taylor formula, any (germ of a) function g ∈ Op can be written (on some neighbor-
hood ofp)

g(x) = g(p) +
n∑

i=1

∂g
∂xi

(p)(xi − pi) +
n∑

i, j=1

(xi − pi)(x j − p j) fi j (x)

for somefi j ∈ Op. Hence by the first two items and the linearity ofv, we get

v(g) =
n∑

i=1

∂g
∂xi

(p)v(xi − pi).
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Thus

v =
∑

vi
∂

∂xi
= α(v1, . . . , vn),

where the numbersvi are equal tov(xi − pi).
In view of the above correspondence, we can drop the tilde in the notationT̃pU, and always view tangent

vectors as derivations on spaces of germs of functions. Evenwhen we express a tangent vector in coordinates,
we will often use notation consistent with the derivation interpretation and write the vector as

v1
∂

∂x1
+ · · · + vn

∂

∂xn

rather than (v1, . . . , vn).
Of course, another familiar notion from multivariable calculus is that of avector fieldon an open setU, which

can be thought of as a smooth family of tangent vectors at all of the points ofU, or as a smooth vector-valued
functionX : U → Rn, expressible in coordinates asX(m) = (X1(m), . . . ,Xn(m)). There is also a coordinate-free
interpretation of what a vector field is: it is a mapX : C∞(U) → C∞(U) which, as with tangent vectors, is a
derivation, namely:

• X(c f + g) = cX( f ) + X(g) for all c ∈ R, f ,g ∈ C∞(U), and
• X( f g) = f X(g) + gX( f ) for all f ,g ∈ C∞(M).

Note that while tangent vectors, when viewed as derivations, just take values inR, vector fields take values in
the space of smooth functions. Just as with tangent vectors,there’s a natural one-to-one correspondence between
the undergraduate versions of vector fields and the derivations onC∞(U): simply assign to (X1(·), . . . ,Xn(·)) the
derivation

f 7→
n∑

i=1

Xi
∂ f
∂xi

.

Again, the great advantage of the derivation interpretation is that it makes no direct reference to coordinates.
So on a smooth manifoldM, once have defined the space of smooth functionsC∞(M), we will effortlessly be
able to define a vector field onM as a derivationX : C∞(M)→ C∞(M).

Another nice feature of the derivation interpretation for vector fields (but not for tangent vectors) is that it
points toward some additional structure on the space of vector fields that we wouldn’t have noticed if we just
worked in coordinates. Namely, given that a vector field is a certain kind of functionX : C∞(U) → C∞(U), it
becomes natural to think about composing such functions. Now a slight hitch with this is that the composition of
two derivations will not typically be a derivation. For example, ∂

∂x1
is a derivation, but ∂

∂x1
◦ ∂
∂x1

certainly is not:
namely we have

∂

∂x1
◦

∂

∂x1
(x1x1) = 2

but

x1
∂

∂x1
◦

∂

∂x1
(x1) + x1

∂

∂x1
◦

∂

∂x1
(x1) = 0.

So while we can “compose” two vector fields the result won’t bea vector field. However:

Proposition 1.1. LetA be a commutativeR-algebra and let X,Y: A → A be two derivations onA. Then the
commutator [X,Y] := X ◦ Y− Y ◦ X is also a derivation onA.

Proof. The linearity of [X,Y] is trivial, so we just need to check the Leibniz rule. We find,for f ,g ∈ A:

[X,Y]( f g) = X (Y( f g)) − Y (X( f g)) = X ( f Yg+ gY f) − Y ( f Xg+ gX f)

= ( f XYg+ (X f)(Yg) + gXY f+ (Xg)(Y f)) − ( f YXg+ (Y f)(Xg) + gYX f+ (Yg)(X f))

= f (XY− YX)g+ g(XY− YX) f = f [X,Y](g) + g[Y,X]( f ),

which is precisely the Leibniz rule for [X,Y]. �
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In local coordinates, ifX =
∑

Xi
∂
∂xi

andY =
∑

Yj
∂
∂x j

, then one finds

[X,Y]( f ) =
n∑

i=1

Xi
∂

∂xi


n∑

j=1

Yj
∂ f
∂x j

 −
n∑

i=1

Yi
∂

∂xi


n∑

j=1

X j
∂ f
∂x j



=

n∑

i, j=1

(
XiYj

∂2 f
∂xi∂x j

+ Xi
∂Yj

∂xi

∂ f
∂x j

)
−

n∑

i, j=1

(
YiX j

∂2 f
∂xi∂x j

+ Yi
∂X j

∂xi

∂ f
∂x j

)

=

n∑

j=1


n∑

i=1

Xi
∂Yj

∂xi
− Yi

∂X j

∂xi


∂ f
∂x j

.

Thus [X,Y] is the vector field
∑

Z j
∂
∂x j

whosejth component is given by

(1) Z j =

n∑

i=1

(
Xi
∂Yj

∂xi
− Yi

∂X j

∂xi

)

This commutator operation on vector fields (also called theLie bracket) turns out to be a fairly important one.
Of course, if one wanted to work entirely in coordinates without taking a more abstract point of view, it would
have been possible to just define the Lie bracket of two vectorfields X andY to be the vector field given by
formula (1), but it’s not clear why one would be motivated to do so.

In general, the commutator operation [·, ·] on the space of linear maps from a vector space to itself satisfies
theJacobi identity:

(2) [X, [Y,Z]] + [Z, [X,Y]] + [Y, [Z,X]] = 0

Indeed, the left hand side is equal to

X(YZ− ZY) − (YZ− ZY)X + Z(XY− YX) − (XY− YX)Z + Y(XZ− ZX) − (ZX− XZ)Y

and (using associativity of function composition) you can see that each of the six three-letter words made up of
one each of the letters X,Y,Z appears above once positively and once negatively, so the sum is zero. Note that if
[·, ·] were an associative operation we would instead have [X, [Y,Z]] + [Z, [X,Y]] = [X, [Y,Z]] − [[X,Y],Z] = 0;
thus the Jacobi identity expresses a particular way for a binary operation to be non-associative. In general a vector
spaceL equipped with a binary operation [·, ·] : A× A→ A which is bilinear, which obeys [X,Y] = −[Y,X], and
which satisfies the Jacobi identity is called aLie algebra; thus we have shown that, ifU ⊂ Rn is open, then the
spaceX(U) of vector fields onU is naturally a Lie algebra.

Exercise1.2. a) Letφ : U → V be a diffeomorphism between two open subsets ofR
n, and letX be a vector field

on U. Prove that ifφ∗X : C∞(V) → C∞(V) is defined by ((φ∗X)( f ))(φ(p)) = (X( f ◦ φ))(p), thenφ∗X is a vector
field on V. Why did we have to assume thatφ was a diffeomorphism (or at least bijective) in order to do this
(unlike the situation with tangent vectors, which can be pushed forward by any smooth map)?

b) Prove that ifX,Y are two vector fields onU and ifφ : U → V is a diffeomorphism then

φ∗[X,Y] = [φ∗X, φ∗Y].
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Exercise1.3. Define the following three vector fields1 onR3:

I = z
∂

∂y
− y

∂

∂z

J = x
∂

∂z
− z

∂

∂x

K = y
∂

∂x
− x

∂

∂y

a) Compute [I , J], [ I ,K], and [J,K].
b) Deduce as a formal consequence of part (a) that the cross product onR3 satisfies the Jacobi identity.

2. Bump functions and partitions of unity in Rn

In point-set topology one learns a result called Urysohn’s Lemma, which states that given inclusionsA ⊂
U ⊂ X whereX is a normal topological space,U is open, andA is closed, there is a continuous function
χ : X → [0,1] identically equal to one onA and identically zero onX \ U. A version of this result is extremely
important in differential topology (perhaps more important than in point-set topology); unfortunately, since we
need our functions to beC∞ and not just continuous, we can’t just cite Urysohn’s Lemma but rather need to prove
a new, smooth, version of the result (of course, this smooth version will apply in a more limited context, if only
because it doesn’t make sense to speak of “smooth functions”on a general normal topological space). The good
news is that the functions can be constructed in a more concrete fashion than one sees in the proof of Urysohn’s
Lemma.

We begin with a result in one-variable calculus.

Lemma 2.1. Define the function f: R→ R by

f (t) =

{
e−1/t t > 0
0 t ≤ 0

Then f ∈ C∞(R). Indeed, for all k∈ N there is a polynomial Pk ∈ R[t] with the property that the kth derivative
f (k) exists and is given by

(3) f (k)(t) =

{
Pk(1/t)e−1/t t > 0
0 t ≤ 0

Proof. First note that if (3) holds, thenf (k) is continuous on all ofR: indeed continuity is obvious everywhere
except zero, and at zero we have, by repeated applications ofL’H ôpital’s rule,

lim
t→0+

Pk(1/t)e
−1/t = lim

s→∞

Pk(s)
es
= lim

s→∞

ck

es
= 0

whereck is some constant (which results from differentiatingdegPk-many times the polynomialPk), from which
continuity at zero follows directly.

Thus we just need to prove (3), which we do by induction onk. So assume (3) holds fork; we prove it for
k+ 1. Fort < 0 the formula is trivial. Fort = 0 we see

lim
t→0+

f (k)(t) − f (k)(0)
t

= lim
t→0+

1
t
Pk(1/t)e

−1/t = lim
s→∞

sPk(s)
es

= 0

1Though it’s not necessary in order to do the problem, you might convince yourself that if one interprets these vector fields in the standard
multivariable calculus sense,I points in the direction of a rotation around thex-axis,J in the direction of a rotation around they-axis, andK
in the direction of a rotation around thez-axis.
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by L’Hôpital’s rule, and so (since the left-hand limit is trivially zero) we havef (k+1)(t) = 0. Finally for t > 0 we
have, by the product and chain rules,

f (k+1)(t) =
d
dt

(
Pk(1/t)e

−1/t
)
= −

1
t2

P′k

(
1
t

)
e−1/t +

1
t2

Pk

(
1
t

)
e−1/t,

and so the formula holds with
Pk+1(s) = s2(P′k(s) + Pk(s)).

�

Note that our functionf is a surjection to the half-open interval [0,1), with f −1({0}) = (−∞,0]. Out of this
function we can build many other useful ones. For instance:

Corollary 2.2. There is a C∞ function g: R → [0,1] with the property that g−1({1}) = [1,∞) and g−1({0}) =
(−∞,0].

Proof. Note that the functiont 7→ f (1− t) is smooth and nonnegative, and equals zero precisely on theinterval
[1,∞). In particular f (t) + f (1− t) is positive everywhere. So we can let

g(t) =
f (t)

f (t) + f (1− t)
.

I leave it to you to check that this has the desired properties. �

Corollary 2.3. For any real numbers a< b there is a C∞ function ga,b : R→ [0,1] such that g−1
a,b({0}) = (−∞,a]

and g−1
a,b({1}) = [b,∞).

Proof. Let

ga,b(t) = g
( t − a
b− a

)
.

�

Corollary 2.4. For any real numbers a< b < c < d there is a smooth “bump” function h: R → [0,1] so that
h−1({1}) = [b, c] and h−1({0}) = (−∞,a] ∪ [d,∞).

Proof. Let
h(t) = ga,b(t)(1− gc,d(t)).

�

Corollary 2.5. For x ∈ Rn and r > 0 let Br (x) = {y ∈ Rn|‖y− x‖ < r} denote the open ball of radius r around x.
Then for any0 < s< r there is a smooth functionβ : Rn→ [0,1] such thatβ−1({1}) = Bs(x) and supp(β) = Br (x).

(Here bysupp(β) we mean thesupportof β, i.e., the closed set{y ∈ Rn|β(y) , 0})

Proof. Let
β(y) = 1− gs2,r2(‖y− x‖2).

�

Our goal now is the following theorem:

Theorem 2.6. Let U ⊂ Rn be an open set, and letV = {Vα|α ∈ A} be an open cover of U. Then there are C∞

functionsχα : U → [0,1] obeying the following properties:

(i) supp(χα) ⊂ Vα

(ii) Any x∈ U has a neighborhood Wx with the property thatχα|Wx = 0 for all but finitely manyα.
(iii) For all x ∈ U we have

∑
α χα(x) = 1.
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Note that property (ii) ensures that
∑
α χα is well-defined and smooth (even if there are infinitely many—

perhaps uncountably many—differentα), sinceU is then covered by open sets on each of which the sum
∑
α χα

is really a finite sum (all but finitely many terms are zero).

Definition 2.7. A collection of functions{χα|α ∈ A} obeying properties (i)-(iii) of Theorem 2.6 is called apartition
of unity subordinate to the cover{Vα}.

Theorem 2.6 has an analogue for general smooth manifolds (see Theorem 3.17); to make this more general
version eventually easier to reach we present the proof for open sets inRn in a fairly general way (a proof more
specifically adapted toRn can be found in Appendix A of Madsen-Tornehave). In particular we bring in the
following definition from point-set topology:

Definition 2.8. A topological space X is calledsecond-countableif there is a countable basis for the topology of
X.

In other words, there should be a collection{On|n ∈ N} of open sets with the property that ifU is open and
x ∈ U thenx ∈ On ⊂ U for somen. For exampleRn has this property (take the base to consist of open balls
centered at points with rational coordinates and having rational radius), as does any open subset ofRn (just use
those rational balls that are contained in the open subset).Part of our eventual definition will require that any
smooth manifold also has this property.

Lemma 2.9. Let X be a second-countable locally compact Hausdorff space. Then there is a sequence of compact
sets{Ki}

∞
i=1 and a sequence of open sets{Hi}

∞
i=1 such that

• Ki ⊂ Hi

• X = ∪∞i=1Ki = ∪
∞
i=1Hi

• If j ≥ i + 3 then Hi ∩ H j = ∅.

Proof. First note that a second-countable, locally compact space has a countable base for its topology which
consists of open sets with compact closure. Indeed, given a countable baseB, by local compactness any point
x ∈ X has a neighborhoodOx with compact closure, and there will be someV ∈ B such thatx ∈ V ⊂ Ox;
evidentlyV will be compact, and the set of allV that can be obtained in this fashion will still be a base for the
topology (and will be contained in the originalB, so will be countable).

So let{Ui}
∞
i=0 be a base for the topology which is countable and such that each Ui is compact. In particular the

Ui coverX. We claim now that there is a sequence{Gi}
∞
i=0 of open sets with eachGi compact, such thatGi ⊂ Gi+1

and such that∪∞i=0Gi = X. Specifically, theGi will have the form

Gi = U0 ∪ · · · ∪ U j i

for a certain increasing sequence of natural numbers{ j i}. To construct the sequence{ j i}, we let j0 = 0 (so
G0 = U0), and assuming that we have chosenjk, so thatGk = U1∪· · ·∪U jk, we note thatGk is compact since the
Ui are, and so since theUi coverX there must be somejk+1 > jk so thatGk ⊂ ∪

jk+1

i=1 Ui . Inductively choosing the
jk in this fashion results in a sequenceGi satisfying the required properties (the fact that theGi coverX follows
from the fact that theUi do, and the fact thatj i → ∞ since thej i are a strictly increasing sequence of natural
numbers).

To constructKi andHi , let K1 = G1, W1 = G2, and, fori ≥ 2, let Ki = Gi \Gi−1 andHi = Gi+1 \Gi−2. These
are easily seen to satisfy the required properties.

�

Proof of Theorem 2.6.Let Ki andHi be subsets ofU as in Lemma 2.9 (applied withX = U), and fix anyi. For
all x ∈ Ki we may chooseαx ∈ A andǫx > 0 so thatB2ǫx(x) ⊂ Vαx ∩ Hi . Then the collection of open balls
{Bǫx(x)|x ∈ Ki} coversKi , so it has a finite subcover.

Now lettingi vary and taking the union of all of these finite subcovers, we have a countable collection of balls
{Bk}

∞
k=1 that coversX, and such that wherẽBk denotes the ball with the same center asBk but twice the radius,
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there areαk and ik such thatB̃k ⊂ Vαk ∩ Hik. (While there may be more than one suchαk and ik—there might
even be uncountably many possibleαk—we specifically choose oneαk andik for everyk. For convenience let us
takeik to be thei for which Bk was a member of the finite subcover ofKi , so that in particular for anyi there are
just finitely manyk with ik = i.)

I claim that the balls̃Bk form alocally finitecover ofU, i.e. that any pointx ∈ U has a neighborhoodOx which
meets just finitely many of thẽBk. Indeed we could use forOx any neighborhood ofx with compact closure. For
thenOx is contained in the union of just finitely many of the setsHi , sayOx ⊂ H1∪ · · · ∪Hr . But theHi have the
property thatHi ∩ Hm = ∅ wheneverm≥ i + 3, and soOx ∩ Hm = ∅ for m≥ r + 3. ConsequentlỹBk ∩Ox = ∅

unlessk is one of the finitely many indices havingik ≤ r + 2.
We can now construct the desired functions. First, for eachk, let ψk : U → [0,1] be a smooth function

identically equal to 1 onBk and such thatsupp(ψk) ⊂ B̃k; suchψk exist by Corollary 2.5. By the previous
paragraph, any point inU has a neighborhood which is disjoint from the supports of allbut finitely many of the
ψk; consequently

ψ =

∞∑

k=1

ψk

is a well-defined, smooth function. Moreoverψ > 0 everywhere, since the (smaller) ballsBk coverU. So for any
k we have a well-defined, smooth functionψk

ψ
, and obviously

∑
k
ψk

ψ
= 1.

Now define

χα =
∑

k:αk=α

ψk

ψ
.

Since B̃k ⊂ Vα wheneverα = αk, we havesupp(χα) ⊂ Vα for all α. Since any point has a neighborhood
intersecting the support ofψk for only finitely manyk, there will be just finitely manyχα whose supports intersect
this neighborhood (namely, just thoseα which equalαk for one of thesek). Finally, we clearly have

∑

α

χα =
∑

α

∑

k:αk=α

ψk

ψ
=

∑

k

ψk

ψ
= 1.

�

As essentially a special case we get a direct analogue of Urysohn’s Lemma:

Corollary 2.10. If A ⊂ U ⊂ Rn with A closed and U open, there is a C∞ function f: Rn → [0,1] with f |A = 1
and supp( f ) ⊂ U.

Proof. Let {χ1, χ2} be a partition of unity subordinate to the cover{U,Rn \ A} of Rn, and let f = χ1. I leave it to
you to confirm the desired properties. �

Exercise2.11. a) LetU ⊂ Rn be open, letp ∈ U, and letX be a vector field onU (use the interpretation ofX
as a derivation fromC∞(U) to itself). Prove that one can obtain a well-defined tangentvector (in the sense of
a derivationOp → R) Xp by the following prescription: If [f ,V] ∈ Op, let f̃ ∈ C∞(U) be a function such that
[ f̃ ,U] = [ f ,V]. ThenX f̃ ∈ C∞(U), and we set

Xp([ f ,V]) = (X f̃ )(p)

(Part of the problem is showing thatf̃ exists, and moreover thatXp([ f ,V]) is independent of the choice of such
a f̃ .)

b) If in coordinates we haveX =
∑

i fi ∂
∂xi

, prove thatXp =
∑

i fi(p) ∂
∂xi

.
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3. Smooth manifolds

Definition 3.1. Let n ∈ N. An n-dimensional topological manifold(or “topological n-manifold”) is a second-
countable Hausdorff space M with the property that, for all m∈ M, there is a neighborhood U⊂ M of m and a
homeomorphismφ : U → V where V⊂ Rn is an open subset.

Remark3.2. Of course, by replacingV with a small open ballB ⊂ V aroundφ(p) andU with φ−1(B), we could
just as well require the image ofφ is an open ball inRn rather than an arbitrary open set. In turn, since any open
ball in Rn is homeomorphic (and indeed diffeomorphic) toRn, we could equally well require the images of the
mapsφ in Defnition 3.1 to all beRn—i.e., a topologicaln-manifold is a second-countable Hausdorff space in
which every point has a neighborhood homeomorphic toRn.

Definition 3.3. Let M be a topological n-manifold, and let k be either a positive integer or∞. A Ck atlason M
is a collectionA = {(Uα, φα)|α ∈ A} where

• The Uα are open subsets of M, and∪α∈AUα = M.
• Eachφα : Uα → R

n is a homeomorphism from Uα to the open subsetφα(Uα) ⊂ Rn, and
• If α, β ∈ A are such that Uα ∩ Uβ , ∅, then

φβ ◦ φ
−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

is of class Ck.

The mapsφα : Uα → R
n are calledcoordinate charts(or sometimes “coordinate patches”) for the atlasA.

Exercise3.4. (a) IfA andB areCk atlases on a topologicaln-manifold, writeA ∼ B if A∪ B is also aCk

atlas. Prove that∼ defines an equivalence relation on the set of all atlases.
(b) If A = {(Uα, φα)} is aCk atlas forM, letAmax denote the set of all pairs (U, φ) whereφ : U → Rn is

a homeomorphism from an open subsetU ⊂ M to an open subsetφ(U) ⊂ Rn, and such that whenever
U ∩ Uα , ∅ the mapφ ◦ φ−1

α : φα(U ∩ Uα) → φ(U ∩ Uα) is Ck and has inverse which isCk. Prove that
Amax is an atlas containingA, and is maximal in the sense that it contains every other atlas that contains
A. Deduce that ifA ∼ B thenAmax= Bmax.

Definition 3.5. A Ck-differentiable structureon a topological n-manifold is a maximal atlasA on M (i.e., an
atlas such that, in the notation of Exercise 3.4(b),A = Amax). An n-dimensionalCk manifold is a topological
n-manifold M equipped with a Ck-differentiable structure. A C∞ manifold will also be called asmooth manifold,
and a C∞-differentiable structure will also be called asmooth structure.

Remark3.6. We will almost exclusively discusssmooth(i.e., C∞) manifolds in this course. This is partly justified
by the fact that, for 1≤ k < ∞, anyCk manifold isCk-diffeomorphic to aC∞ manifold (there is a proof in
Hirsch’s bookDifferential Topology). On the other hand there is some real loss of generality in looking atC∞

(or even justC1) manifolds rather than just topological (C0) manifolds, as there are topological manifolds which
are not homeomorphic to anyC1 manifold. Examples of such are rather complicated—Kervaireconstructed a
10-dimensional one in 1960, and the lowest dimension in which any occur is 4, where there are examples due to
Freedman in the early 1980s.

Remark3.7. The definition is that a smooth manifold is a certain kind of topological space equipped with amax-
imal C∞ atlas. A maximal atlas is a rather unwieldy object—except in trivial cases it will consist of uncountably
many coordinate charts. But in view of Exercise 3.4 it is rarely if ever necessary to really work with a maximal
atlas—you just have to specifyoneatlas (often with a small, finite number of charts), and then this canonically
determines a maximal atlas by the construction in Exercise 3.4(b). One could equally well define a smooth man-
ifold as a topological manifold equipped with an equivalence class of atlases, where the equivalence relation is
the one from Exercise 3.4(a). One advantage of a maximal atlas is that “everything that could be a coordinate
patch is,” so that if you have to work in local coordinates youhave a great variety of possible coordinate systems
to work in and you can choose whichever works best for your purposes at the time.
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Example3.8. As the simplest possible example, we note thatR
n is canonically a smooth manifold: take an atlas

consisting of the single pair (1Rn,Rn) where 1Rn denotes the identity map. As noted in Remark 3.7 specifying
this (very small!) atlas canonically determines a maximal atlas (i.e., a differentiable structure).

Of course we could just as well have replacedRn by any open subsetU of Rn, using the atlas{(1U ,U)} to
makeU into a smooth manifold. More generally, ifM is any smooth manifold with atlas{(φα,Uα)} and ifU ⊂ M
is an open subset then we naturally get an atlas onU, namely{(φα|U∩Uα

,U ∩ Uα)}.

I promised at the outset that a smooth manifold would be the kind of space on which it is possible to do
something resembling calculus. In particular ifM is a smoothm-manifold it should be possible to speak of
differentiable functions fromM to Rn, or vice versa, for anyn (and, more generally, ifM andN are two smooth
manifolds we should be able to speak of differentiable functions fromM to N). The principle is simple: one
checks the differentiability of a function by using coordinate charts to turn the function into one whose domain
and range are open subsets of Euclidean space, where we already have a notion of differentiability.

Definition 3.9. Let M be an m-dimensional smooth manifold, with (maximal) atlas {(φα,Uα)|α ∈ A}.

• If f : M → Rn is a continuous function, we say f is of class Ck, and write f ∈ Ck(M,Rn), if for every
α ∈ A the function

f ◦ φ−1
α : φα(Uα)→ Rn

is of class Ck (note that f◦ φ−1
α is a function from an open set inRm toRn, so the notion of f◦ φ−1

α being
of class Ck is well-defined from multivariable calculus).
• If V ⊂ Rm is an open subset and g: V → M is a continuous function we say that g is of class Ck, and

write Ck(V,M), if for all α ∈ A the function

φα ◦ g: g−1(Uα)→ Rm

is of class Ck.
• Suppose that N is an n-dimensional smooth manifold, with (maximal) atlas{ψβ,Vβ)|β ∈ B}. If f : M →

N is a continuous function, we say that f is of class Ck if, for all α, β such that f(Uα) ∩ Vβ , ∅, the
function

ψβ ◦ f ◦ φ−1
α : φα(Uα ∩ f −1(Vβ))→ R

n

is of class Ck (as a function from an open subset ofRm toRn).

The appropriate notion of isomorphism of smooth manifolds is the following:

Definition 3.10. Let M and N be Ck-manifolds. A Ck-diffeomorphismfrom M to N is a smooth, bijective map
f : M → N such that f−1 is also smooth.

As mentioned earlier, we will generally just consider theC∞ case—as such a “diffeomorphism” will, unless
otherwise indicated, mean aC∞ diffeomorphism.

Of course, it would be a pain to actually check that Definition3.9 is satisfied since maximal atlases are very
large. But the following exercise shows that theCk property can be checked more easily (and also implies that,
viewingRn as a smooth manifold, the third part of the above definition contains the first two as special cases).
This exercise is intended in part to demonstrate the role of the assumption on the functionsφβ ◦ φ−1

α in the
definition of an atlas.

Exercise3.11. Let M andN be smooth manifolds, and letf : M → N be a continuous function. Prove that
f ∈ Ck(M,N) if and only if the following holds: For eachx ∈ M, there exists a coordinate chartφ : U → Rm

from the atlas forM and a coordinate chartψ : V → Rn from the atlas forN such thatx ∈ U, f (x) ∈ V and

ψ ◦ f ◦ φ−1 : φ(U ∩ f −1(V))→ Rn

is of classCk.
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Thus in practice to show that a map isCk we just need to find collections of charts covering the manifolds in
terms of which the map is aCk map between Euclidean spaces, rather than checking the condition on the entire
maximal atlas. Another way of saying this is that the two appearances of the word “(maximal)” in Definition 3.9
are unnecessary—we can just use any atlases (possibly quite small) to check theCk condition.

Example3.12. One can see that then-dimensional sphere

Sn =

(x0, x1, . . . , xn) ∈ Rn+1

∣∣∣∣∣∣∣

n∑

i=0

x2
i = 1



is a smooth manifold by using stereographic projections. Ofcourse the subspace topology onSn induced by its
inclusion intoRn+1 makesSn into a second-countable Hausdorff space. We construct a smooth atlas onSn with
two charts: define

U− = {(x0, . . . , xn) ∈ Sn|x0 , 1}

U+ = {(x0, . . . , xn) ∈ Sn|x0 , −1}

In other words,U− andU+ are the complements of the north and south poles, respectively. ClearlySn = U−∪U+.
Now defineφ− : U− → Rn by

φ−(x0, . . . , xn) =

(
x1

1− x0
, . . . ,

xn

1− x0

)

and similarly defineφ+ : U+ → Rn by

φ+(x0, . . . , xn) =

(
x1

1+ x0
, . . . ,

xn

1+ x0

)

Soφ− can be visualized as sending a pointp ∈ Sn\{north pole} to the point of intersection between the hyperplane
{x0 = 0} and the unique line through the north pole andp. It is clear from the formulas thatφ− andφ+ are
continuous. Both of them are in fact homeomorphisms toRn: one finds that the inversesφ−1

± R
n → U± are given

by the formula

φ−1
± (y1, . . . , yn) =

±
1−

∑
y2

i

1+
∑

y2
i

,
2y1

1+
∑

y2
i

, . . . ,
2yn

1+
∑

y2
i

 .

Since the inverses are continuous theφ± are indeed homeomorphisms toRn. What remains is to check that
the “transition function”φ+ ◦ φ−1

− : φ−(U+ ∩ U−) → φ+(U+ ∩ U−) is C∞, and likewise thatφ− ◦ φ−1
+ is C∞ (of

course, the second of these is the inverse of the first). NowU+ ∩ U− is the complement of the two (north and
south) poles ofSn, i.e. U+ ∩ U− = Sn \ {(±1,0, . . . ,0)}. Now

φ+(1,0, . . . ,0) = φ−(−1,0, . . . ,0) = (0, . . . ,0),

so
φ−(U+ ∩ U−) = φ+(U+ ∩ U−) = R

n \ {(0, . . . ,0)}.

For any (y1, . . . , yn) ∈ Rn \ {(0, . . . ,0)} we have

φ+ ◦ φ
−1
− (y1, . . . , yn) = φ+


∑

y2
i − 1

∑
y2

i + 1
,

2y1∑
y2

i + 1
, . . . ,

2yn∑
y2

i + 1



=




2
∑

y2
i∑

y2
i + 1


−1

2y1∑
y2

i + 1
, . . . ,


2
∑

y2
i∑

y2
i + 1


−1

2yn∑
y2

i + 1



=


y1∑
y2

i

, . . . ,
yn∑
y2

i

 .

Since this map is defined only on the complement of the origin,it is clearlyC∞ (the components are quotients of
nonvanishingC∞ functions), and its inverse (which as noted earlier isφ− ◦ φ

−1
+ ) is evidentlyC∞ as well (actually
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if you look at the formula you see that it turns out that this map is equal to its own inverse). Thus we’ve shown
that the transition functions for our atlas areC∞, completing the proof thatSn is a smooth manifold.

Example3.13. Recall that then-dimensionalreal projective spaceRPn is the space of lines through the origin in
R

n+1. This is given the structure of a (second-countable, Hausdorff) topological space by identifying it as

RPn =
R

n+1 \ {~0}
~v ∼ λ~v ∀~v ∈ Rn+1 \ {0}, λ ∈ R \ {0}

and using the quotient topology. Thus a general element ofRPn+1 can be written as an equivalence class
[x0, . . . , xn] for somexi ∈ R with not all xi = 0, and we have [x0 : · · · : xn] = [y0 : · · · : yn] iff there is
λ , 0 so thatyi = λxi for all i. (Thexi are called “homogeneous coordinates.”)

We now put a differentiable structure onRPn, making it a smoothn-manifold. Fori = 0, . . . ,n let

Ui = {[x0, . . . , xn] ∈ RPn|xi , 0}

(of course, the truth or falsehood of the statement thatxi , 0 is independent of which representative of the
equivalence class we choose). TheUi are open sets (why?), andRPn = ∪n

i=0Ui since any element ofRPn has at
least one of its homogeneous coordinates nonzero.

It shouldn’t be too hard to convince yourself that each of theopen setsUi is homeomorphic toRn: for
example fori = n, an element ofx ∈ Un has form [x0 : · · · : xn] where xn , 0, and sincexn , 0 we
can simultaneously multiply all of thexi by 1

xn
—this doesn’t change the equivalence class, but changes the

last homogeneous coordinate to 1. ThusUn can be identified with the set of tuples (x0, . . . , xn−1,1), which is
equivalent toRn.

To make the discussion in the previous paragraph more precise, we introduce chartsφi : Ui → R
n. Namely,

define

φi : Ui → R
n

φi([x0 : · · · : xn]) =

(
x0

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xn

xi

)
.

This map is certainly well-defined, since multiplying all entries of (x0, . . . , xn) by the same scalarλ does not
affect the ratiosx j/xi . Moreover we see thatφi is bijective, with inverse given by

φ−1
i (y0, . . . , yi−1, yi+1, . . . , yn) = [y0 : · · · , yi−1 : 1 : yi+1 : · · · : yn].

Bothφi andφ−1
i are continuous—of course to see this one has to think a little bit about the quotient topology, but

it’s not hard and is left to you.
So we have a coveringRPn = ∪n

i=0Ui by open sets with homeomorphismsφi : Ui → R
n. It remains to check

that the transition functionsφi ◦ φ
−1
j : φ j(Ui ∩ U j) → φi(Ui ∩ U j) are smooth. This follows quickly from the

formulas that we’ve already written down: assuming thati < j

φi ◦ φ
−1
j (y0, . . . , y j−1, y j+1, . . . , yn) = φi([y0 : · · · : y j−1 : 1 : y j+1 : · · · : n])

=

(
y0

yi
, . . . ,

yi−1

yi
,
yi+1

yi
, . . . ,

y j−1

yi
,

1
yi
,
y j+1

yi
, . . . ,

yn

yi

)
.

Of course the case thati > j differs from this only in the ordering ofi and j in the above formula. Now on the
open subsetφ j(Ui ∩U j) ⊂ Rn we will haveyi , 0, soφi ◦φ

−1
j is indeed smooth onφ j(Ui ∩U j), as required. Thus

{(φi ,Ui) : i = 0, . . . ,n} forms aC∞ atlas forRPn, makingRPn into a smooth manifold.
Fairly easy modifications of this argument show that the complex projective spaceCPn is a smooth 2n-

manifold, and that the quaternionic projective spaceHPn is a smooth 4n-manifold.

Exercise3.14. Recall that another way of describingRPn is as a quotient ofSn by the equivalence relation
which identifies anyx ∈ Sn ⊂ Rn+1 with −x. Thus we have a quotient projectionπ : Sn → RPn. Prove that
π ∈ C∞(Sn,RPn).
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Exercise3.15. (a) If M andN are smooth manifolds, construct aC∞ atlas on the productM ×N (thusM ×N has
the structure of a smooth manifold).

(b) Let M be a Hausdorff space, and suppose that we can writeM = U ∪ V whereU andV are open sets, and
bothU andV are smooth manifolds. SinceU∩V is an open subset ofU, it inherits a differentiable structure from
U; likewiseU ∩ V inherits a differentiable structure fromV. Assume that these two differentiable structures on
U ∩ V are the same. Prove that one can then construct a smooth structure onM such that the inclusionsU → M
andV → M are both smooth maps.

(c) Prove that for anyg the compact surface of genusg (and no boundary) can be given the structure of a
smooth manifold (Hint: The caseg = 0 is covered by Example 3.12, andg = 1 follows from Example3.12 and
part (a). Now repeatedly use (b) together with the fact that an open subset of a smooth manifold is naturally a
smooth manifold.)

Remark3.16. In our examples we’ve brushed over the question of whether the smooth structures on these spaces
are unique. This is an important but difficult question; a fair amount is now known, but the proofs are generally
beyond the scope of this course. It’s known that in any dimension n ≤ 3, every topologicaln-manifold has a
unique smooth structure; in particular the smooth structures on surfaces from the exercise above are the only
possible ones. Things become more complicated beginning in(and especially in) dimension 4: in fact there are
uncountably many distinct smooth structures onR4, and there are many compact 4-manifolds with infinitely many
smooth structures, and none that are currently known to havejust one smooth structure (though as mentioned
earlier there are some topological 4-manifolds withno smooth structures). For spheres, oncen ≥ 7 there is
typically more than one smooth structure onSn; the first “exotic” structure onS7 was a big surprise when it was
discovered by Milnor in 1956. It’s still a major open question whether there are any smooth structures onS4

other than the standard one.

We now record a result asserting the existence of partitionsof unity subordinate to covers of smooth manifolds:

Theorem 3.17. Let M be a smooth manifold and let{Vα|α ∈ A} be a collection of open subsets of M with
∪α∈AVα = M. Then there is a smooth partition of unity on M subordinate to the cover{Vα}, i.e., a collection
{χα|α ∈ A} where

• Eachχα ∈ C∞(M), with 0 ≤ χα(x) ≤ 1 for all x ∈ M
• For all α, supp(χα) ⊂ Vα

• For any x∈ M there is a neighborhood Ox of x such that Ox ∩ supp(χα) = ∅ for all but finitely manyα
•

∑
α χα = 1

Proof. The special case in whichM is an open subset ofRn was proven as Theorem 2.6. That proof carries over
directly to the more general case now that we have the appropriate definitions. Indeed, a smooth manifoldM is
by definition second-countable and Hausdorff, and is certainly locally compact (any point has a neighborhood
whose closure is homeomorphic to a closed ball inRn and so is compact), so Lemma 2.9 applies to produce a
sequence of compact setsKi and open setsHi . These sets can then be used just as they are used in the proof
of Theorem 2.6. Basically all that needs to be changed is the first paragraph of that proof: ifx ∈ Ki we can
find a neighborhood ofx having the formφ−1(B2rx(φ(x))) which is contained inVαx ∩Wi for someαx, where
φ : U → Rn is some chart (depending onx) whose domainU containsx. The setsφ−1(Brx(x)) then coverKi ,
and this cover has a finite subcover. Aggregating these finitesubcovers gives a countable sequence{Bk} of open
sets coveringM; the Bk are preimages of balls inRn by local chartsφ, and whereB̃k is the preimage of the ball
with the same center and twice the radius we will haveBk ⊂ Vαk ∩Wik for appropriateαk, ik. Moreover there is a
smooth functionψk supported inB̃k and identically equal to one onBk—just precompose an appropriate smooth
function onRn given by Corollary 2.5 withφ−1. The proof of Theorem 2.6 then applies verbatim. �

Partitions of unity are very useful in the study of smooth manifolds. For a brief indication of why, consider the
case in which the cover{Vα} consists of the domains of coordinate chartsφα : Vα → R

n (of course, by definition,
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any smooth manifold admits such a cover). Iff ∈ C∞(M), then we can write

f =


∑

α

χα

 f =
∑

α

(χα f ).

Now for anyα the functionχα f is supported in the setVα, which is identified byφα with an open subset inRn.
So we can hope to analyzef by decomposing it as a sum of smooth functionsχα f , where each of these smooth
functions can (at least individually) be treated as though it were just a compactly supported smooth function on
R

n. To get slightly ahead of myself, the same applies whenf is, instead of a smooth function, a differential form.

3.1. Tangent spaces.If M is a smooth manifold andm ∈ M, we will define a vector spaceTmM called the
tangent space to M at m. As suggested at the start of these notes, there are various ways of trying to do this,
any of which can be considered to be inspired by the special case in whichM is an open subset ofRn. For
instance we could define a tangent vectorv at m to be an equivalence class [γ] whereγ : (−ǫ, ǫ) → M is aC∞

map from an open interval around 0 toM with γ(0) = m, with two curvesγ1, γ2 considered to be equivalent if
d
dt(φα ◦ γ1)(0) = d

dt(φα ◦ γ1)(0) (as vectors inRn) for one (and hence every—why?) chartφα : Uα → R
n whose

domain containsm. However, for definiteness we will adopt the third interpretation from the start of the notes:
a tangent vector atm will be, by definition, a derivation from the algebra of germsof smooth functions defined
nearm toR.

So just as earlier we consider pairs (f ,V) whereV is an open neighborhood ofm in M and f : V → R is C∞

(this notion is well-defined sinceV, being an open set in a smooth manifold, is itself a smooth manifold, and we
have defined the space ofC∞ functions on a smooth manifold). Say that (f1,V1) ∼ ( f2,V2) if and only if there is
an open setW with m ∈W ⊂ V1 ∩V2 and f1|W = f2|W. LetOm denote the set of equivalence classes; this inherits
addition, multiplication, and scalar multiplication fromC∞(M) (for example, [f ,V][g,W] = [ f g,V ∩W]).

Definition 3.18. TmM is defined as the space of derivations v: Om→ R, i.e., maps v such that

• v(c f + g) = cv( f ) + v(g) if c ∈ R and f,g ∈ Op

• v( f g) = f (m)v(g) + g(m)v( f ) if f ,g ∈ Om

As indicated in the above definition we will often abuse notation slightly by just writing f for [ f ,V]. Compat-
ibly with this abuse of notation, ifφ : M → N is a smooth map whereN is another smooth manifold andm ∈ M,
if we write f for an element [f ,V] ∈ Oφ(m) (thus f is a function defined on a neighborhood off (m) in N), then
we will write f ◦ φ for the element [f ◦ φ, φ−1(V)] ∈ Om. These sorts of abuse of notation are justified by the
fact that replacing the open setV by a different neighborhood ofφ(m) will not change either the element [f ,V]
(denotedf ) or the element [f ◦ φ, φ−1(V)] (denotedf ◦ φ).

We record here the fact that, ifU ⊂ M is an open subset andm ∈ U, there is a canonical identification ofTmU
with TmM (convince yourself of this if it’s not obvious). Also, in case U is an open subset ofRn, our definition
coincides with the one from the start of these notes.

Definition 3.19. If φ : M → N is a smooth map between smooth manifolds and if m∈ M, thederivative ofφ at
m (sometimes called thelinearization ofφ atm is the map

φ∗ : TmM → Tφ(m)N

defined by
(φ∗(v))( f ) = v( f ◦ φ)

whenever f∈ Oφ(m) and v∈ TmM.

Sometimes it’s helpful to indicatemwithin the notation forφ∗, in which case we’ll write (φ∗)m. One also sees
the notationdφ or dmφ used to denote what we have calledφ∗.

Proposition 3.20. Where1M is the identity map then for all m∈ M, (1M)∗ : TmM → TmM is the identity map.
Also, ifφ : M → N andψ : N→ P are smooth maps then

(ψ ◦ φ)∗ = ψ∗ ◦ φ∗
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Proof. The first statement (about the identity) is obvious from the definition. For the second, we have, iff ∈
Oψ◦φ(m),

((ψ ◦ φ)∗v)( f ) = v( f ◦ (ψ ◦ φ)) = v(( f ◦ ψ) ◦ φ) = (φ∗v)( f ◦ ψ) = (ψ∗φ∗v)( f ).

�

Corollary 3.21. If m ∈ M where M is a smooth n-manifold, thendimTmM = n.

Proof. We can choose a coordinate chartφ : U → φ(U) whereU is an open neighborhood ofm. As noted earlier
we haveTmM = TmU. By Proposition 3.20, (φ−1)∗ ◦ φ∗ = (φ−1 ◦ φ)∗ is the identity map fromTmU = TmM to
itself, andφ∗ ◦ (φ−1)∗ = (φ ◦ φ−1)∗ is the identity map fromTφ(m)φ(U) to itself. Thusφ∗ is an isomorphism of
vector spaces fromTmM to Tφ(m)φ(U), with inverse (φ−1)∗. We showed in Section 1 that, sinceφ(U) is an open
subset ofRn, dimTφ(m)φ(U) = n, so the conclusion follows. �

Expanding a bit on the above proof, recall that we showed thatTφ(m)φ(U) consists precisely of mapsOφ(m) → R

taking the formg 7→
∑n

i=1 vi
∂g
∂xi
|φ(m). So since (φ−1)∗ is an isomorphism, we conclude that, in the presence of a

chosen coordinate chartφ : U → Rn aroundm, a general elementv ∈ TmM will be given by the formula

v( f ) =
n∑

i=1

vi
∂

∂xi
( f ◦ φ−1)|φ(m).

When this is the case, we will say something along the lines of,“v is given in the coordinate chartφ by
v =

∑
vi

∂
∂xi

.” Of course, the coefficientsvi will depend on the coordinate chart, not just on the tangent vectorv.

Exercise3.22. Let φ, ψ : U → Rn be two coordinate charts whereU is an open subset of a smooth manifoldM,
and letm ∈ U. If v is given in the coordinate chartφ by v =

∑
vi

∂
∂xi

, and is given in the coordinate chartψ by

v =
∑

wi
∂
∂yi

, find, with proof, an expression for thewi in terms of thevi and the mapsφ ◦ ψ−1 and/or ψ ◦ φ−1.

So if M is a smoothn-manifold, we have associated to every pointm ∈ M an n-dimensional vector space
TmM. A diffeomorphismφ : M → M′ induces an isomorphism of vector spacesφ∗ : TmM → Tφ(m)M′. However
there is (in general) no canonical way of identifyingTm1 M with Tm2 M for distinct pointm1,m2 ∈ M (of course,
since the two vector spaces have the same dimension, they areisomorphic as vector spaces, just not canonically
so).

Relatedly, while choosing the pointm ∈ M canonically determines then-dimensional vector spaceTmM, it
does not canonically determine a basis for this vector space. One way of choosing a basis forTmM is suggested
above: choose a local coordinate chartφ : U → Rn aroundU; then a basis is given by the derivationsf 7→ ∂

∂xi
( f ◦

φ−1)(p) for i = 1, . . . ,n (the members of this basis are typically denoted by∂
∂xi

. Different choices of coordinate
chart of course give rise to different bases; the relationship between the bases is determined by Exercise 3.22.

Thetangent bundleof a smooth manifold is, as a set, defined to be the union

T M = ∪m∈M{m} × M.

For any subsetS ∈ M (typically S will be open or closed) we define the “restriction of the tangent bundle toS”
as

T M|S = ∪m∈S{m} × TmM.

Given a coordinate chartφ : U → Rn whereU ⊂ M is open, we have a bijectionΦ : T M|U → φ(U) × Rn given
by

Φ

(
m,

∑
vi
∂

∂xi

)
= (φ(m), v1, . . . , vn).

We can then define a topology onT M by requiring that each of these bijections be homeomorphisms—more
precisely, we take as a base for this topology the collectionof subsets of the formΦ−1(V) whereΦ : T M|U →
φ(U) × Rn is a map as above constructed from a coordinate chartφ andV ⊂ φ(U) × Rn is open.
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The various homeomorphismsΦ : T M|U → φ(U) × Rn associated to coordinate chartsφ : U → φ(U) in fact
form aC∞ atlas forT M. Indeed the domainsT M|U certainly coverT M (sinceM is covered by coordinate charts)
and so we just need to check that the transition functions aresmooth. This latter fact follows from Exercise 3.22.
Indeed, ifφα : Uα → R

n andφβ : Uβ : Uβ → R
n are two coordinate charts, then it should follow from your

computation in Exercise 3.22 that the transition function

Φβ ◦ Φ
−1
α : φα(Uα ∩ Uβ) × R

n→ φβ(Uα ∩ Uβ) × R
n

is given by

(4) Φβ ◦ Φ
−1
α (x,~v) = (φβ ◦ φ

−1
α (x),gαβ(x)~v)

wheregαβ is a certain smooth function which takes values in the group of invertible n × n matrices. Thus the
transition functions are smooth, and so determine a smooth manifold structure onT M.

Of course, we have a projectionπ : T M→ M which sends (m, v) to m. In terms of the local coordinate charts
Φ onT M andφ on M, π just acts by the projection ofφ(U) × Rn onto its first factor; thusπ is a smooth map.

Summing up, out of ann-dimensional smooth manifoldM we have constructed a 2n-dimensional smooth
manifoldT M, equipped with a projectionπ : T M → M. The “fibers”π−1({m}) of π are canonically identified
with the tangent spacesTmM, and thus aren-dimensional vector spaces. Moreover there is an atlas onT M such
that the transition functions respect the vector space structures on the fibers in the sense that they are given by
a formula of the shape (4) where eachgαβ(x) is a linear map.T M is thus an example of what is called avector
bundle; we will see more examples of vector bundles as the course proceeds.

3.2. Vector fields. Consistently with what was done in Section 1, we make the following definition:

Definition 3.23. Let M be a smooth manifold and U⊂ M an open subset. Avector field onU is a derivation
X : C∞(U)→ C∞(U) (i.e., X obeys X(c f + g) = cX f + Xg and X( f g) = f Xg+ gX f if f,g ∈ C∞(U), c ∈ R). We
denote the space of vector fields on U byX(U).

Just as in Section 1, we can scalar multiply, add, and take thecommutators of derivations fromC∞(U) to
itself, soX(U) naturally has the structure of a Lie algebra.

A vector field onU should have another interpretation as a “smoothly-varying” choice of tangent vector
at m for eachm ∈ M. We now lay out how this works. ForU ⊂ M we have a (restricted) tangent bundle
π : T M|U → U.

Definition 3.24. A smooth sectionof T M over U is a smooth map s: U → T M|U such thatπ ◦ s is the identity.
We writeΓ(U,T M) for the space of smooth sections of T M over U.

In other words,s(m) ∈ TmU for all p ∈ U; the notion that the tangent vectors should vary smoothly isencoded
in the requirement thats should be a smooth map. SinceTmU is a vector space, we get vector space operations
on Γ(U,T M) defined by (cs)(m) = c(s(m)) and (s1 + s2)(m) = s1(m) + s2(m) (there’s something to show here,
namely that for instance the sum of two smooth sections is still smooth, but it’s not hard to check this). One
important example of a section ofT M (or more generally of any vector bundle) is thezero section, defined by
s(m) = 0 ∈ TmM for all p. (To see that this is smooth, just note that in the local coordinatesφ(U) × Rn ⊂ R2n

described earlier the map is given byx 7→ (x,0) which is obviously a smooth map fromRn toR2n).
Recall Exercise 2.11, to which the following gives a solution:

Proposition 3.25. Let M be a smooth manifold, U⊂ M open, m∈ U, and X ∈ X(U). Then the following
prescription uniquely specifies an element Xm ∈ TmM. For any [ f ,V] ∈ Om, choose af̃ ∈ C∞(U) such that
[ f̃ ,U] = [ f ,V], and define Xm([ f ,V]) = (X f̃ )(m).

Proof. First of all we need to show that for any [f ,V] ∈ Om (in other words,V is an open set aroundm and
f is a smooth function onV) there is a smooth functioñf defined throughoutU and coinciding on withf
on some neighborhoodG of m. To see this, note that we can find a coordinate chartφ : W → Rn around
m and r > 0 so thatφ−1(B2r (φ(m))) ⊂ V. Take a partition of unity{χ1, χ2} subordinate to the open cover
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{φ−1(B2r (φ(m))),M \ φ−1(Br (φ(m)))} of M. Then let f̃ = χ1 f ; initially this function is only defined onV, but
since it has support contained in a compact subset ofV we may extend it by zero to obtain a smooth function on
all of M. Sinceχ1 + χ2 = 1 andχ2 vanishes onφ−1(Br (φ(m))), f̃ coincides withf onφ−1(Br (φ(m))), as desired.

We now show that the value (X f̃ )(m) is independent of the choice of̃f with [ f̃ ,U] = [ f ,V]. If g̃ is another
such choice, there is a neighborhoodW of m such that f̃ |W = g̃|W. Let O be a neighborhood ofm such that
m ∈ O ⊂ W (for instance takeO to be the preimage of a small ball in a coordinate chart, as in the previous
paragraph). Just as in the previous paragraph we can find a smooth functionχ : M → R such thatχ|O = 1 and
supp(χ) ⊂ W. Let β = 1− χ, soβ vanishes identically on the neighborhoodO of m and is equal to 1 outsideW.
Hence

(1− β2) f̃ = (1− β2)g̃

(both sides are zero everywhere thatf̃ , g̃). On the other hand
(
X(β2 f̃ )

)
(m) = β(m)

(
X(β f̃ )

)
(m) + β(m) f̃ (m) (Xβ) (m) = 0

and similarly (
X(β2g̃)

)
(m) = 0.

Hence

(X f̃ )(m) =
(
X(β2 f̃ )

)
(m) +

(
X((1− β2) f̃ )

)
(m)

=
(
X((1− β2) f̃ )

)
(m) =

(
X((1− β2)g̃)

)
(m)

=
(
X(β2g̃)

)
(m) +

(
X((1− β2)g̃)

)
(m) = (Xg̃)(m).

This confirms that the prescription of the proposition givesa well-defined mapXm : Om → R. It remains to
check thatXm is a derivation. But this follows easily from the derivationproperty forX. Given [f ,V], [g,W] ∈
Om, if we use f̃ ∈ C∞(U) to computeXm[ f ,V] = (X f̃ )(m) andg̃ ∈ C∞(U) to computeXm[g,V] = (Xg̃)(m) then
we can usẽf g = f̃ g̃ to computeXm([ f ,V][g,W]) (of course we could make other choices for̃f g, but the start of
the proof ensures that this would result in the same value forXm([ f ,V][g,W])). Then the derivation property for
X shows

Xm([ f ,V][g,W]) =
(
X( f̃ g)

)
(m) = f (m)(Xg̃)(m) + g(m)(X f̃ )(m)

= f (m)Xm[g,W] + g(m)Xm[ f ,V].

R-linearity is proved in essentially the same way, completing the proof thatXm ∈ TmM.
�

We now show that giving a vector field (in the sense of a derivation on the space of smooth functions) is
exactly the same as giving a smooth section of the tangent bundle.

Theorem 3.26. Let U be an open subset of the smooth manifold M. A bijectionF : X(U) → Γ(U,T M) may be
defined as follows. For X∈ X(U), setF (X) equal to the map sX : M → T M defined by sX(m) = Xm (where Xm

is given by Proposition 3.25).

Proof. First we need to show thatF is well-defined—we certainly have a well-defined functionsX : M → T M
for anyX ∈ X(U), andsX is a section in the sense thatπ ◦ sX = 1M, but we also need to check thatsX is smooth
in order forF to take values in the spaceΓ(U,T M) of smooth sections.

To see this, note first of all that a functionf between two smooth manifolds is smooth if and only if the domain
can be covered by open sets to each of whichf restricts as a smooth function. Ifm ∈ M, let φ : V → Rn be a
coordinate chart withm ∈ V ⊂ U, and forr > 0 small enough thatB2r (φ(m)) ⊂ φ(V) let Wm = φ

−1(Br (φ(m))).
We will show thatsX|Wm is smooth, which suffices since any point inM has a neighborhood of the formWm.

In this direction, letχ : M → R be a smooth function withχ|Wm
= 1 andsupp(χ) ⊂ V. For anyq ∈ Wm and

f ∈ Oq we have
(sX(q))( f ) = Xq( f ) = Xq(χ f )
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since f andχ f coincide on a neighborhood (namelyWm) of q.
Now for eachj = 1, . . . ,n write g j = (x j ◦ψ) ·χ ∈ C∞(M). Then onWm, g coincides with thejth coordinate of

the chartψ|Wm : Wm→ R
n. We know that, for eachq ∈Wm, sinceXq ∈ TqM we can expressXq in the coordinate

chartψ asXq =
∑

i vi(q) ∂
∂xi
|q for somevi(q) ∈ R. Evaluating on the functionsg j we see that, for eachj,

v j(q) = (Xgj)(q).

Thus the functionsv j : Wm→ R are each smooth. Now in terms of the local coordinates for thetangent bundle
described at the end of the previous subsection, the mapsX is given within Wm by the formula (wherex ∈
ψ(Wm) ⊂ Rn)

x 7→
(
x, v1(ψ−1(x)), . . . , vn(ψ−1(x))

)
.

This map is smooth since thev j are smooth. ThussX|Wm is smooth, and sosX is smooth sinceU can be covered
by open sets of the formWm.

Now that we have shown the mapF : X(U) → Γ(U,T M) to be well-defined, we show that it is bijective.
Suppose thatX,Y ∈ X(U) are two distinct vector fields onU. Then there isf ∈ C∞(U) andm ∈ U such that
(X f)(m) , (Y f)(m). But then [f ,U] is a well-defined element ofOm with Xm([ f ,U]) , Ym([ f ,U]), and thus
Xm , Ym, i.e. sX(m) , sY(m). ThusF is injective.

Finally suppose thats ∈ Γ(U,T M); we must findX ∈ X(U) so thatsX = s. If f ∈ C∞(U) then for allm we
have an element [f ,U] ∈ Om and so a real number (s(m))([ f ,U]). This determines a functionX f : U → R by
the formula (X f)(m) = (s(m))([ f ,U]). The derivation propertiesX(c f + g) = cX f + XgandX( f g) = f Xg+ gX f
follow directly from the fact that eachs(m) is a derivation fromOm to R; however we still need to check that
X f ∈ C∞(U) for any f ∈ C∞(U). In a local coordinate chartψ : V → Rn, the tangent vectorss(m) for m ∈ V
are represented ass(m) =

∑
vi(m) ∂

∂xi
, where the functionsvi areC∞ by the fact thats is a smooth map. But then

X f |V =
∑

vi
∂ f
∂xi

, which is a smooth function. ThusX f restricts to each coordinate chart as a smooth function, and
so is smooth. It is clear from the definition thatsX = s. �

So we have two equivalent characterizations of vector fieldson M: as derivationsC∞ → C∞, and as smooth
sectionsM → T M (which in coordinate charts can be locally expressed in the form

∑
vi

∂
∂xi

for suitable smooth
functionsvi). Both characterizations are often useful.

4. Differential forms

As the title of the course textbook suggests, a very important role will be played in the rest of the course by
what are called thedifferential formson a smooth manifold. IfM is a smoothn-manifold, we will develop the
notion of a “p-form” on M for p = 0,1, . . . ,n (and also forp > n, but for algebraic reasons it turns out that
the onlyp-forms with p > n will be zero). Thesep-forms will form a vector spaceΩp(M), and we will have a
very important mapd, called theexterior derivative, which maps the space of all differential forms to itself and
restricts for eachp to a mapd: Ωp(M)→ Ωp+1(M).

To ease into this, let’s start withp = 0 andp = 1.

Definition 4.1. A 0-form on M is a smooth function f: M → R. In other wordsΩ0(M) = C∞(M).

The case of 1-forms is a bit more interesting. First we introduce the notion of thecotangent space:

Definition 4.2. • If M is a smooth manifold and m∈ M, thecotangent space atm, denoted by T∗mM, is the
dual space to the tangent space TmM.
• Thecotangent bundleof M is

T∗M = ∪m∈M{m} × T∗mM.

In other words,T∗mM consists of linear functionalsα : TmM → R. Since a vector space and its dual have the
same dimension, ifM is ann-manifold then dimT∗pM = n for all m ∈ M.

Definition 4.2 identifies the cotangent bundleT∗M as a set. One can equip it with a topology and then with
a smooth manifold structure, in such a way that the projection π : T∗M → M (sending (m, α) to m if α ∈ T∗mM)
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makesT∗M into a vector bundle, just like the situation with the tangent bundle. At least for now we won’t really
need to use this fact, but note that we have (at least at a set-theoretic level) the notion of asection s: M → T∗M,
i.e. a functions: M → T∗M such thatπ◦ s= 1M. A sections: M → T∗M associates to eachm ∈ M an element
sm ∈ T∗pM.

Definition 4.3. A differential 1-formon a smooth manifold M is a sectionα : M → T∗M which satisfies the
following smoothness property: Whenever X∈ X(M) is a vector field on M, the function

α(X) : m 7→ αm(Xm)

is a C∞ function on M. We denote byΩ1(M) the vector space of differential1-forms.

To unpack the above, note that the sectionα of thecotangentbundle determinescovectorsαm ∈ T∗mM for all
m, while the vector fieldX (which by Theorem 3.26) is equivalent to a section of thetangentbundle, determines
for eachma tangent vectorXm ∈ TmM. Hence we can evaluateαm(Xm), and the smoothness requirement onα is
that (as long asX is smooth) the result of this evaluation varies smoothly with m. If we had gone ahead and put
a smooth manifold structure onT∗M it turns out that this would be equivalent to requiringα : M → T∗M to be
a smooth map.

As mentioned earlier, for allp we will define a mapd: Ωp(M)→ Ωp+1(M). I can now fulfill this promise for
p = 0. Actually if one thinks of tangent vectors as derivations the definition may seem strangely simple:

To any f ∈ Ω0(M), i.e., any smooth functionf , we are to associate a sectiond f : M → T∗M. In other words
for eachm we should obtain (d f)m: TmM → R. Well, bearing in mind that an element ofTmM is a derivation
from functions defined nearm toR, we use the formula

(5) (d f)m(v) = v( f ) if v ∈ TmM.

Suppose now thatφ : U → Rn is a coordinate chart, whereU ⊂ M is open. NowU is a smooth manifold in
its own right, so we can considerΩ1(U). The coordinate chartφ distinguishes some special smooth functions
on U, namely thecoordinate functions x1, . . . , xn (perhaps we should really writex1 ◦ φ, . . . , xn ◦ φ, or we could
just agree that the decomposition ofφ into coordinates is given byφ(m) = (x1(m), . . . , xn(m))). Since thexi are
smooth functions (i.e., 0-forms) onU, we obtain 1-forms dx1, . . . ,dxn ∈ Ω

1(U). So for eachm ∈ U we have
covectors (dxi)m ∈ T∗mU = T∗mM.

On the other hand, recall that the tangent spaceTmM atm has basis given by∂
∂x1
|m, . . . ,

∂
∂xn
|m. We have

(dxi)m

(
∂

∂x j
|m

)
=

∂

∂x j
(xi) = δi j .

Thus the (dxi)m form adual basisto the cotangent spaceT∗mM with respect to the basis
{
∂
∂xi
|m
}

for TpM.

Since the (dxi)m form a basis forT∗mM at allm, it follows that any 1-formα ∈ Ω1(U) can be written as

α =

n∑

i=1

αidxi

for some functionsαi ∈ C∞(U) (which may be recovered by evaluatingα on ∂
∂xi

).

Exercise4.4. Suppose that we have two different coordinate charts

φ : m 7→ (x1(m), . . . , xn(m)) and ψ : m 7→ (y1(m), . . . , yn(m))

each with domain given by some open subsetU of a smooth manifold. Ifα ∈ Ω1(U) can be written as

α =

n∑

i=1

αidxi =

n∑

i=1

βidyi

find a general formula (in terms of the derivatives ofφ ◦ ψ−1 and/or ψ ◦ φ−1) for the relationship between the
coefficientsαi andβi .
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The above exercise is designed to be compared to Exercise 3.22. A single coordinate chart aroundmproduces
distinguished bases

{
∂
∂xi
|m
}

for TmM and {(dxi)m} for T∗mM, allowing one to parametrizeTmM or T∗mM by Rn.
Changing the coordinate chart changes the appropriate parametrization for eitherTmM or T∗mM, and you should
have found that the way in which the parametrization transforms under a coordinate change is different forTmM
than it is forT∗mM. This reflects the fact that vector fields and 1-forms really are fundamentally different kinds of
objects.

If ( x1, . . . , xn) : U → Rn is a coordinate patch andm ∈ U, we see that

d fm

(
∂

∂xi

)
=
∂ f
∂xi

(m) =


n∑

j=1

∂ f
∂x j

(dxj)m


(
∂

∂xi

)
,

and thus, throughout the coordinate chartU, we have

(6) d f =
n∑

j=1

∂ f
∂x j

dxj .

In principle we could also have definedd: Ω0(M) → Ω1(M) by saying that if f ∈ Ω0(M) has support in a
coordinate chart thend f is given by formula (6), and requiring thatd be linear overR—this would determine
d f for any f (not necessarily supported in a coordinate chart) since by using a partition of unity we can write an
arbitrary function as a sum of functions each of which is supported in a coordinate chart. (Of course, with this
approach one would need to make sure thatd f didn’t depend on the way in whichf is decomposed as such a
sum—our more natural and coordinate-free definition ofd evades this issue).

Having defined the mapd: Ω0(M) → Ω1(M), one could ask whether it is surjective. A little thought should
convince you that the answer must be no (if dimM ≥ 2)—indeed this may be familiar from multivariable
calculus. Consider just a 1-formα which is supported in a coordinate chartU, so in coordinatesα|U =

∑
i αidxi

for some smooth functionsαi supported inU, andα vanishes elsewhere. Evidently ifα = d f then, onU, we
would haveαi =

∂ f
∂xi

. Since f is assumedC∞, its mixed partials are equal and so if we hadα = d f we would

need∂αi

∂x j
=

∂α j

∂xi
for all i, j, and of course these equations have no reason to hold for a general collection of smooth

functionsαi supported inU.
Thus we obtain anobstructionto a 1-formα being in the image ofd, which in local coordinates can be seen

as coming from the partial derivatives of the various components ofα. If α is in the image ofd it is calledexact.
Once we define the space of 2-formsΩ2(M) and the exterior derivatived: Ω1(M) → Ω2(M), we will see that
the above obstruction vanishes in the sense that the relevant partial derivatives coincide if and only ifdα = 0.
Indeed,d ◦ d: Ω0(M) → Ω2(M) is zero (as, more generally, isd ◦ d: Ωp(M) → Ωp+2(M)). One can then ask
whether everyα for which the obstruction vanishes (dα = 0) is indeed exact. We’ll see that the answer to this
question depends on the topology ofM (as measured by thede Rham cohomology groups). )

4.1. The alternating algebra.

Definition 4.5. Let V be a vector space overR, and let p be a positive integer. Analternatingp-form on V is a
functionη : Vp→ R with the following properties:

• η is p-linear: For any i, if c∈ R and v1, . . . , vp ∈ V and wi ∈ V then

η(v1, . . . , vi−1, cvi + wi , . . . , vp) = cη(v1, . . . , vi−1, vi , . . . , vp) + η(v1, . . . , vi−1,wi , . . . , vp).

• V is antisymmetric: if v,w ∈ V then, for any i< j and any u1, . . . ,ui−1,ui+1, . . . ,u j−1,u j+1, . . . ,up ∈ V

η(u1, . . . ,ui−1, v,ui+1, . . . ,u j−1,w,u j+1, . . . ,up) = −η(u1, . . . ,ui−1,w,ui+1, . . . ,u j−1, v,u j+1, . . . ,up).

We will denote the vector space of alternating p-forms on V byΛpV∗. We extend the notationΛpV∗ to p= 0 by
settingΛ0V∗ = R.
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Implicit in the above is that the alternatingp-forms do indeed form a vector space, which should be clear. Our
notationΛpV∗ reflects a number of algebraic facts, not all of which we will need or use: for any vector spaceV
there is a certain standard vector spaceΛpV (“the pth graded part of the exterior algebra”), and (at least assuming
thatV is finite-dimensional) what we denote byΛpV∗ can be canonically identified both with (ΛpV)∗ and with
Λp(V∗) (so our lack of parentheses is in writingΛpV∗ is deliberate). There is an obvious identification ofΛ1V∗

with V∗.
With this definition, there is for allp,q ≥ 0 a map

∧ : ΛpV∗ × ΛqV∗ → Λp+qV∗

(α, β) 7→ α ∧ β

called thewedge product, which satisfies various important properties. Let us give the definition gradually. The
first interesting case is whenp = q = 1: in this case we define the wedge product by, forα, β ∈ Λ1V∗, and
v,w ∈ V,

(α ∧ β)(v,w) = α(v)β(w) − α(w)β(v).

It is not hard to see that, with this definition,α ∧ β does indeed belong toΛ2V∗ (the minus sign ensures that the
antisymmetry condition holds). We then extend this to the case thatp = 1 butq is arbitrary by, forα ∈ Λ1V∗, β ∈
ΛqV∗,

(α ∧ β)(v1, v2, . . . , vq+1) = α(v1)β(v2, . . . , vq+1) − α(v2)β(v1, v3, . . . , vq+1)

+ α(v3)β(v1, v2, v4, . . . , vq+1) + · · · + (−1)lα(vq+1)β(v1, . . . , vq)

=

q+1∑

j=1

(−1) j−1α(v j)β(v1, . . . , v j−1, v j+1, . . . , vq+1)

We introduce a notation for “omitting” inputs intok-forms as we often need to do: instead of writing
β(v1, . . . , v j−1, v j+1, . . . , vq+1) we will write β(v1, . . . , v̂ j , . . . , vq+1); thus the hat signifies that thejth term has
been omitted.

We should check thatα∧β as defined above is actually an element ofΛq+1V∗. It’s fairly obvious from this def-
inition thatα∧β is (q+1)-linear. As for antisymmetry, if we switchvk andvl with k < l then the antisymmetry of
β shows that all terms in the sum change sign except for those with j = k, l. Meanwhile thekth term changes from
(−1)k−1α(vk)β(v1, . . . , v̂k, . . . , vl , . . . , vq+1) to (−1)k−1α(vl)β(v1, . . . , v̂l , . . . , vk, . . . , vq+1), and thelth term changes
from (−1)l−1α(vl)β(v1, . . . , vk, . . . , v̂l , . . . , vq+1) to (−1)l−1α(vk)β(v1, . . . , vl , . . . , v̂k, . . . , vq+1). I claim that the new
lth term is the negative of the oldkth term, and vice versa. Indeed to convert the newlth term to something that
looks like the oldkth term we can “move thevl pastvk+1, . . . , vl−1”—in other words we should switchvl with vk+1,
then switchvl with vk+2, and so on, until we switchvl with vl−1. Sinceβ is antisymmetric each of these switches
produces a factor of−1, and so since there are a total ofl − k−1 numbers fromk+1 to l −1 the whole procedure
produces a factor of (−1)l−k−1. So the newlth term is equal to (−1)l−1(−1)l−k−1α(vk)β(v1, . . . , v̂k, . . . , vq+1), which
is indeed equal to the negative of the oldkth term. Similarly, the newkth term can be equated with the negative
of the oldlth term by “movingvk l −k−1 slots to the left.” Summing up, switchingvk with vl causes all the terms
with j < {k, l} to change signs, and also causes the sum of thekth andlth terms to change sign. This proves that
α ∧ β is alternating, so our mapΛ1V∗ × ΛqV∗ → Λq+1V∗ is well-defined.

Finally we extend the definition of the wedge product to general values ofp andq. One way of characterizing
this extension is that, given our definition for the casep = 1, there turns out to be a unique way of extending the
definition to generalp so that the operation∧ will be bilinear and associative (for instance, ifα, β ∈ Λ1V∗, so
thatα ∧ β ∈ Λ2V∗, we take the wedge product withα ∧ β (on the left) by insisting that (α ∧ β) ∧ γ = α ∧ (β ∧ γ)
for γ ∈ ΛqV∗—since we’ve already decided how to take wedge product with 1-forms the right-hand side is
well-defined).

Instead of showing that this indirect argument gives a well-defined prescription, we give a formula. Given
nonnegative integersp andq, let Sp,q denote the collection ofp-element subsets of{1, . . . , p + q}. Then for
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S ∈ Sp,q let the positive integersiS1 < iS2 < · · · < iSp be the elements ofS, and let the positive integersjS1 < . . . < jSq
be the elements of{1, . . . , p+ q} \ S. DefineρS : {1, . . . , p+ q} → {1, . . . , p+ q} by, for 1≤ k ≤ p, ρS(k) = iSk ,
and forp+ 1 ≤ k ≤ p+ q, ρS(k) = jSk−p. In other wordsρS is the permutation of{1, . . . , p+ q} gotten by writing
all the elements ofS in increasing order, and then all the elements of{1, . . . , p+ q} \ S in increasing order. Let
(−)S be 1 if the permutationρS is even and−1 if ρS is odd. The general formula for the wedge product is then

(7) (α ∧ β)(v1, . . . , vp+q) =
∑

S∈Sp,q

(−)Sα(viS1
, . . . , viSp )β(v jS1

, . . . , v jSq )

In other words, (α ∧ β)(v1, . . . , vp+q) is gotten by looking at all the different products gotten by plugging inp of
thevi into α andq of them intoβ, and summing these up with a naturally associated sign. It’snot hard to see that
this coincides with our previous definition in casep = 1.

To help verify some other properties of the wedge product (inparticular the fact that the wedge product
of alternating forms is alternating) we rewrite (7) as a sum over all permutations onp + q letters. LetSp+q

denote the group of permutations onp + q letters. IdentifySp × Sq with a subgroup ofSp+q by associating to
(σ, τ) ∈ Sp×Sq with the permutation onp+q letters (still denoted (σ, τ)) such that (σ, τ)(i) = σ(i) for 1 ≤ i ≤ p
and (σ, τ)(p+ j) = p+τ( j) for 1 ≤ j ≤ q (in other words,σ acts on the firstp letters andτ acts on the lastq). Any
permutation inη ∈ Sp+q can be written uniquely in the formη = ρS ◦ (σ, τ) whereρS is one of the permutations
from the previous paragraph: namely, letS = {η(1), . . . , η(p)}; let σ send j to r if η( j) is therth largest element
of S; and letτ sendj to s if η(p+ j) is thesth largest element ofS \ {η(1), . . . , η(p)}. If η = ρS ◦ (σ, τ) we see that

α(vη(1), . . . , vη(p)) = sgn(σ)α(vη(σ−1(1)), . . . , vη(σ−1(p))) = sgn(σ)α(viS1
, . . . , viSp )

wheresgn(σ) is one ifσ is even and−1 if σ is odd, and similarly

β(vη(p+1), . . . , vη(p+q)) = sgn(τ)β(v jS1
, . . . , v jSq ).

Now evidently ifη = ρS ◦ (σ, τ) thensgn(η) = (−)Ssgn(σ)sgn(τ), and so we deduce

sgn(η)α(vη(1), . . . , vη(p))β(vη(p+1), . . . , vη(p+q)) = (−)Sα(viS1
, . . . , viSp )β(v jS1

, . . . , v jSq ) if η = ρS ◦ (σ, τ).

Now as mentioned earlier anyη ∈ Sp+q can be expressed uniquely asρS ◦ (σ, τ) for someS, σ, τ, and so since
the pair (σ, τ) varies through the groupSp×Sq which has orderp!q!, we deduce the following (more symmetric
and redundant) version of (7):

(8) (α ∧ β)(v1, . . . , vp+q) =
1

p!q!

∑

η∈Sp+q

sgn(η)α(vη(1), . . . , vη(p))β(vη(p+1), . . . , vη(p+q))

From (8) it is not difficult to see thatα ∧ β (which is obviously (p + q)-linear) is antisymmetric and hence
is an alternating (p + q)-form: indeed, letτk,l be the transposition which switches lettersk and l; of course any
permutation can be written uniquely in the formη ◦ τk,l , and so we have

(α ∧ β)(v1, . . . , vp+q) =
1

p!q!

∑

η∈Sp+q

sgn(η ◦ τk,l)α(vη◦τk,l (1), . . . , vη◦τk,l (p))β(vη◦τk,l (p+1), . . . , vη◦τk,l (p+q))

=
1

p!q!

∑

η∈Sp+q

(−1)sgn(η)α(vη(1), . . . , vη(p))β(vη(p+1), . . . , vη(p+q)) but with the places ofη(k) andη(l) switched

= −(α ∧ β)(v1, . . . , vk−1, vl , vk+1, . . . , vl−1, vk, vl+1, . . . , vp+q).

This proves that the map∧ : ΛpV∗×ΛqV∗ → Λp+qV∗ defined by the equivalent formulas (7,8) is well-defined.
The definition is still valid whenp and/or q is zero (recalling thatΛ0V∗ = R by definition): wedge product with
a 0-form is just multiplication by the corresponding number.

We define thealgebra of alternating forms on Vas the direct sum

Λ∗V∗ = ⊕∞p=0Λ
pV∗.
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This is equipped with the obvious vector space structure, and also with a multiplication operation∧ induced by
extending bilinearly from the above-defined operations∧ : ΛpV∗ × ΛqV∗ → Λp+qV∗

Proposition 4.6. The wedge product obeys:

(a) For α ∈ ΛpV∗, β ∈ ΛqV∗,
β ∧ α = (−1)pqα ∧ β.

(b) For all α, β, γ ∈ Λ∗V∗,
α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

Proof. (a) Let ηp,q ∈ Sp+q be the permutation given byη(i) = q + i for 1 ≤ i ≤ p and η( j) = j − p for
p+ 1 ≤ j ≤ p+ q. Note thatsgn(ηp,q) = (−1)pq (why?). Any permutation inSp+q can be written uniquely in the
form η ◦ ηp,q, so we have

α ∧ β(v1, . . . , vp+q) =
1

p!q!

∑

η∈Sp+q

sgn(η ◦ ηp,q)α(vη◦ηp,q(1), . . . , vη◦ηp,q(p))β(vη◦ηp,q(p+1), . . . , vη◦ηp,q(p+q))

=
1

p!q!

∑

η∈Sp+q

(−1)pqsgn(η)β(vη(1), . . . , vη(q))α(vη(q+1), . . . , vη(p+q))

= (−1)pqβ ∧ α,

proving (a).
(b) Using the bilinearity of∧ we may assume that, for somep,q, r, we haveα ∈ ΛpV∗, β ∈ ΛqV∗, and

γ ∈ ΛrV∗. Consider ways of writing{1, . . . , p + q + r} as a disjoint union{1, . . . , p + q + r} = S1
∐

S2
∐

S3

where #S1 = p, #S2 = q, #S3 = r. For any such decomposition, write the elements ofS1 in increasing order
asa1 < · · · < ap, those ofS2 asb1 < · · · < bq, and those ofS3 asc1 < · · · < cr . Also let (−)S1S2S3 for the sign
of the permutation obtained by sendingi to ai for 1 ≤ i ≤ p, to bi−p for p + 1 ≤ i ≤ p + q, and toci−p−q for
p+ q+ 1 ≤ i ≤ p+ q+ r. Then after repeatedly applying our original formula (7) and unraveling the notation it
is easy to check that both

(α ∧ (β ∧ γ)) (v1, . . . , vp+q+r ) and ((α ∧ β) ∧ γ) (v1, . . . , vp+q+r )

are equal to ∑

S1,S2,S3

(−)S1S2S3α(va1, . . . , vap)β(vb1, . . . , vbq)γ(vc1, . . . , vcr ).

�

Of course, one consequence of associativity is that ifα1, . . . , αm ∈ Λ
∗V∗ we can unambiguously writeα1∧· · ·∧

αm. The results of Proposition 4.6 can be summarized as sayingthatΛ∗V∗ is an associative, graded commutative
algebra.

We now observe that the exterior algebra behaves nicely under linear maps. Suppose that we have two real
vector spacesV,W and a linear mapA: V → W. For anyp, we obtain a linear mapA∗ : ΛpW∗ → ΛpV∗ (called
thepullback of A) by setting

(A∗α)(v1, . . . , vp) = α(Av1, . . . ,Avp).

Note that since we don’t assumeA to be invertible it is necessary forA∗ to “go in the opposite direction” to get
a well-defined map. Extending by linearity produces a linearmap A∗ : Λ∗W∗ → Λ∗V∗ defined on the whole
alternating algebra.

Proposition 4.7. If A : V →W is a linear map andα, β ∈ Λ∗W∗ then

A∗(α ∧ β) = (A∗α) ∧ (A∗β).

Proof. This is an immediate consequence of our formula (7) for the wedge product. �
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In other words, a linear mapA: V → W induces not just a linear map but in fact an algebra homomorphism
Λ∗W∗ → Λ∗V∗. Looking at how compositions behave, one sees easily that the alternating algebra construction
V 7→ Λ∗V∗ defines a contravariant functor from the category of real vector spaces to the category of real associa-
tive graded commutative algebras. (Given what we’ve proven, one just needs to check that 1∗V = 1Λ∗V∗ and that
(A ◦ B)∗ = B∗ ◦ A∗.)

In the discussion of alternating forms so far, we have avoided choosing a basis for the vector spaceV (and
we haven’t even assumed thatV is finite-dimensional). This has been deliberate, as we intend to apply this with
V equal to the tangent spaceTmM at a point on a smooth manifold, and as mentioned before although we can
impose a basis onTmM by choosing a coordinate chart aroundm, different coordinate charts yield different bases
and so there is no canonical choice. However to actually do any computations on a specific vector space one
typically does eventually have to choose a basis, and so we now turn to discussing how a basis forV allows one
to do calculations inΛ∗V∗.

So letV be a real vector space with finite dimensionn and basis{e1, . . . ,en}. Let {e1, . . . ,en} denote the dual
basis forV∗ (soei(ej) = δi j ), and recall thatV∗ is equal toΛ1V∗, so that theei can be viewed as elements of the
alternating algebraΛ∗V∗.

Proposition 4.8. Letη ∈ ΛpV∗ and suppose that for all p-tuples of integers(i1, . . . , ip) with 1 ≤ i1 < · · · < ip ≤ n
we have

η(ei1, . . . ,eip) = 0.

Thenη = 0.

Proof. Suppose to the contrary thatη , 0. Then we can choose somev1, . . . , vp ∈ V with η(v1, . . . , vp) ,
0. Now thevi can be written in the formv =

∑
j v ji ej for some real numbersv ji . Repeatedly using thep-

linearity of η we then find that the nonzero numberη(v1, . . . , vp) can be written as a linear combination of the
real numbersη(ej1, . . . ,ejp) for variousk-tuples (j1, . . . , jp). So the fact thatη(v1, . . . , vp) , 0 implies that some
η(ej1, . . . ,ejp) , 0 where j1, . . . , jp ∈ {1, . . . ,n}. Now if two of the numbersj i are equal to each other then it
follows directly from the antisymmetry property ofη thatη(ej1, . . . ,ejp) would be zero, so the numbersj1, . . . , jp

makingη(ej1, . . . ,ejp) , 0 must all be distinct. But again using the antisymmetry property, any reordering of the
numbersj1, . . . , jp causesη(ej1, . . . ,ejp) to change only by multiplication by±1. So if we choosei1 < · · · < ip

to be the result of writingj1, . . . , jp (which we know to be distinct) in strictly increasing order it will hold that
η(ei1, . . . ,eip) , 0. This proves (the contrapositive of) the proposition. �

Proposition 4.9. Suppose that1 ≤ p ≤ n and that1 ≤ i1 < · · · < ip ≤ n and1 ≤ j1 < · · · < jp ≤ n are two
strictly increasing sequences of integers from1 to n. Then

(ei1 ∧ · · · ∧ eip)(ej1, . . . ,ejp) =

{
1 if i l = j l for all l
0 otherwise

Proof. We can use induction onp. For p = 1 this is just the definition of the dual basis, so assume the result
holds for p and consider increasing sequencesi1 < · · · < ip+1 and j1 < · · · < jp+1. If these sequences are not
identical to each other, then there is somer such thatjr < {i1, . . . , ip+1}. We have (usingˆto signify omission)

(9) (ei1 ∧ · · · ∧ eip+1)(ej1, . . . ,ejp+1) =
p+1∑

s=1

(−1)s−1ei1(ejs)(e
i2 ∧ · · · ∧ eip+1)(ej1, . . . , êjs, . . . ,ejp+1).

The rth term vanishes becausejr , i1, and all of the other terms vanish by the inductive hypothesis because
jr < {i2, . . . , ik+1}. This proves the “otherwise” part of the proposition.

On the other hand if eachi l coincides withj l , then since thei l form an increasing sequence it follows from the
inductive hypothesis that, in (9), the first term (i.e. the one withs= 1) equals 1 and all others equal zero. �

Corollary 4.10. If I = (i1, . . . , ip) is a p-tuple of integers with1 ≤ i1 < · · · < ip ≤ n = dimV, and if we write

eI = ei1 ∧ · · · ∧ eip,
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then the various eI form a basis forΛpV∗. In particular dimΛpV∗ =
(
n
p

)
= n!

p!(n−p)!

Proof. The variouseI are linearly independent: if some linear combination
∑

I cI eI = 0 then, for anyJ =
( j1, . . . , jp), evaluating both sides on the tuple (ej1, . . . ,ejp) shows thatcJ = 0 by Proposition 4.9.

To see that theeI spanΛpV∗, if η ∈ ΛkV∗ andI = (i1, . . . , ip) is an increasing sequence, letηI = η(ei1, . . . ,eip).
Then by Proposition 4.9 we have η −

∑

I

ηI e
I

 (ej1, . . . ,ejp) = 0

for all increasing sequencesj1 < · · · < jp. So by Proposition 4.8 it follows thatη =
∑

I ηI eI .
The statement about dimΛpV∗ just follows from counting the number of increasing sequences of p-tuples

I drawn from the set{1, . . . ,n}, which is evidently the same as the number ofp-element subsets of{1, . . . ,n},
which of course is

(
n
p

)
.

�

Of course, the formula dimΛpV∗ =
(
dimV

p

)
continues to hold forp = 0 for trivial reasons. We note in particular

that, if dimV = n, ΛpV∗ is trivial for p > n, andone-dimensionalfor p = n. Evidently a generator for the one-
dimensional vector spaceΛnV∗ is given bye1 ∧ . . . ∧ en where theei form a dual basis to a basis{ei} for v. For
some other basis{ fi} the elementf 1 ∧ · · · ∧ f n will then be a multiple ofe1 ∧ · · · ∧ en; this multiple is given by
the determinant of a certain basis change matrix, as you may be able to see from the following exercise:

Exercise4.11. Let A: V → V be a linear map, whereV is ann-dimensional real vector space. We then have an
induced mapA∗ : ΛnV∗ → ΛnV∗, which is a linear map from a one-dimensional vector space toitself and hence
is given by the formulaA∗x = cAx for all x wherecA is some number depending onA. Prove thatcA = detA.
(Hint: Choose a basis in terms of whichA has Jordan normal form)

Exercise4.12. Let V be a finite-dimensional real vector space and letα ∈ ΛpV∗, with 2 ≤ p ≤ dimV. Let us say
thatα is decomposableif there areα1, . . . , αp ∈ Λ

1V∗ so thatα = α1 ∧ · · · ∧ αp.
(a) Prove that ifα is decomposable thenα ∧ α = 0.
(b) Prove that if dimV = 2 or 3 then (for 2≤ p ≤ dimV) everyα ∈ ΛpV∗ is decomposable.
(c) If dim V ≥ 4, construct (with proof, giving an explicit formula) someα ∈ Λ2V∗ such thatα is not

decomposable. (Hint: By (a) it is enough to arrange thatα ∧ α , 0.)

4.2. Higher-degree differential forms. If M is a smooth manifold andm ∈ M we letΛpT∗mM denote the space
of alternatingp-forms on the tangent spaceTmM (strictly speaking in the notation of the previous subsection we
should instead writeΛpTmM∗, but we do not), and let

ΛpT∗M = ∪m∈M{m} × Λ
pT∗mM.

Thus projection onto the first factor gives a functionπ : ΛpT∗M → M, and so we can consider the notion of a
sections: M → ΛpT∗M, i.e. a maps obeyingπ ◦ s = 1M, and thus associating to eachm ∈ M an alternating
p-form sm on the tangent spaceTmM.

Definition 4.13. A differentialp-form on M is a sectionη : M → ΛpT∗M obeying the following smoothness
property: If X1, . . . ,Xp are any smooth vector fields on M, then the function

m 7→ ηm

(
(X1)m, . . . , (Xp)m

)

is of class C∞. We denote the vector space of differential p-forms on M byΩp(M).

Note that this coincides with the previous definition forp = 1, recalling the general fact thatΛ1V∗ = V∗. We
also earlier definedΩ0(M) to be the space of smooth functions fromM toR; sinceΛ0V∗ = R this new definition
is equivalent (albeit slightly notationally different, but this shouldn’t cause a problem) to the previous one.
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Assume that dimM = n. Choose a coordinate chart (x1, . . . , xn) : U → Rn with m ∈ U. Recall that, for
eachm ∈ M, the covectors (dx1)m, . . . , (dxn)m form a basis forT∗mM, dual to the basis

{
∂
∂xi
|m
}

for TmM. For
I = (i1, . . . , ip) ∈ {1, . . . ,n}p with i1 < . . . < ip, write

dxI
m = (dx1)m∧ · · · ∧ (dxn)m.

According to Corollary 4.10, the variousdxI
m form a basis forΛpT∗mM. Consequently, for anyη ∈ Ωp(M), for

eachq in the coordinate patchU we can write

ηq =
∑

I

fI (q)dxI
q

for some functionsfI : U → R. Moreover, by evaluatingη on tuples of vector fields whose restrictions toU
coincide with some of the∂

∂xi
, we see that the functionsfI are smooth. Thus, a differentialp-form restricts to a

coordinate chart (U, x1, . . . , xn) as an object of the form

η|U =
∑

I

fI dxI where fI ∈ C∞(U).

In less abbreviated notation, we could write

η|U =
∑

i1<···<ip

fi1···ipdxi1 ∧ · · · ∧ dxip.

Having defined the spaces ofp-formsΩp(M), we can letΩ∗(M) = ⊕∞p=0Ω
p(M); a differential formon M is

then simply an element ofΩ∗(M).
For eachm ∈ M and p,q ≥ 0 we have a wedge product operation∧ΛpT∗mM × ΛqT∗mM → Λp+qT∗mM. This

then induces a wedge productΩp(M) × Ωq(M) → Ωp+q(M) in an obvious way, setting (α ∧ β)m = αm ∧ βm. So,
extending bilinearly, we get a wedge product∧ : Ω∗(M) × Ω∗(M) → Ω∗(M). In view of Proposition 4.6, the
wedge product on differential forms is associative and graded commutative.

We now complete the definition of theexterior derivative d: Ω∗(M)→ Ω∗(M).

Theorem 4.14. There is a uniqueR-linear map d: Ω∗(M)→ Ω∗(M) obeying the following properties:

(i) For all p, the restriction d|Ωp(M) has image contained inΩp+1(M).
(ii) d|Ω0(M) coincides with the map d: Ω0(M)→ Ω1(M) defined in (5).

(iii) If ω ∈ Ωp(M) andφ ∈ Ωq(M) we have

d(ω ∧ φ) = (dω) ∧ φ + (−1)pφ ∧ dω.

(iv) d ◦ d = 0.

For any coordinate chart(x1, . . . , xn) : U → Rn, if ω|U =
∑

I fI dxI , then

(10) dω|U =
n∑

j=1

∑

I

∂ fI
∂x j

dxj ∧ dxI .

Proof. We start with the following lemma. Of course, thesupport supp(η) of a p-form η is by definition the
closure of the set ofm ∈ M for whichηm ∈ Λ

pT∗mM is nonzero.

Lemma 4.15. Assume that the linear map d: Ω∗(M) → Ω∗(M) satisfies properties (i)-(iv) and suppose that
ω ∈ Ωp(M) has supp(η) equal to a closed subset of M which is contained in the domain Uof a coordinate chart
(x1, . . . , xn) : U → Rn. If ω|U =

∑
I fI dxI , then dω has support contained in U and dω|U =

∑n
j=1

∑
I
∂ fI
∂x j

dxj ∧dxI .
The same conclusion continues to hold if we only assume that conditions (i)-(iv) hold for d when d is restricted
to forms whose supports are contained in U.
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Proof. Let β : M → R be a smooth function such thatβ|supp(ω) = 1 andsupp(β) ⊂ U. Note then that for each
i the smooth functionβxi : U → Rn has closed support withinU, and therefore extends to a smooth function
on all of M by setting it equal to zero outside ofU. Also the functionsfI each have support contained in the
support ofω (on whichβ = 1), so thefI also extend by zero to smooth functions on all ofM, and moreover if
I = (i1, . . . , ip) we have (at least onU, where both sides are defined)

fI dxI = fI d(βxi1) ∧ · · · ∧ d(βxip).

Thus

ω =
∑

I=(i1,...,ip)

fI d(βxi1) ∧ · · · ∧ d(βxip)

(the two sides coincide onU, and are both zero outside ofU).
Now by induction on the integerr it is easy to see from conditions (iii) and (iv) that, for any smooth functions

g1, . . . ,gr we have

d (dg1 ∧ dg2 ∧ · · · ∧ dgr ) = 0.

Applying this fact together with (iii) again (and the linearity of d) shows that

dω =
∑

I

d fI ∧ d(βxi1) ∧ · · · ∧ d(βxip).

Sinceβ is identically 1 on the union of the supports of thefI (which is contained inU), and sinced fI =
∑

j
∂ fI
∂x j

dxj

onU, the result follows. �

Motivated by this lemma, choose once and for all a cover{Uα} by domains of coordinate charts (xα1 , . . . , x
α
n) : Uα →

R, and let{χα} be a partition of unity subordinate to the cover{Uα}. For I = (i1, . . . , ip) let dxI
α = dxαi1 ∧ · · ·∧dxαip

.

Lemma 4.16. For anyα letΩ∗α(M) denote the space of differential forms on M whose support is contained inα.
Define dα : Ω∗α(M)→ Ω∗α(M) by setting, ifω ∈ Ω∗α(M) withω|Uα

=
∑

I fI dxI
α,

dαω|Uα
=

∑

I

d fI ∧ dxI
α

(and dαω = 0 outside Uα). Then dα : Ω∗α(M) → Ω∗α(M) satisfies (i)-(iv) of Theorem 4.14 when restricted to
Ω∗α(M), and is the unique such map with these properties.

Proof. Uniqueness is already proven in (the last sentence of) Lemma4.15, so we just need to check that (i)-(iv)
are satisfied. (i) is obvious, and (ii) is given by Equation 6.The fact that (iii) holds outside ofUα is trivial (both
sides are zero); inside ofUα let us writeω|Uα

=
∑

I fI dxI
α andφ|Uα =

∑
J gJdxJ

α (where the multi-indicesI have
lengthp and the multi-indicesJ have lengthq). We then have, onUα,

dα(ω ∧ φ) = dα


∑

I ,J

fI gJdxI
α ∧ dxJ

α

 =
∑

k,I ,J

∂( fI gJ)
∂xαk

dxαk ∧ dxI
α ∧ dxJ

α

=
∑

k,I ,J

(
∂ fI
∂xαk

gJ + fI
∂gJ

∂xαk

)
dxαk ∧ dxI

α ∧ dxJ
α

=
∑

k,I ,J

(
∂ fI
∂xαk

dxαk ∧ dxI
α

)
∧ (gJdxJ

α) +
∑

k,I ,J

(−1)p( fI dxI
α) ∧

(
∂gJ

∂xαk

)
dxαk ∧ dxJ

α

= (dαω) ∧ φ + (−1)pω ∧ dαφ
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where the (−1)p comes from applying Proposition 4.6 (a) to the wedge productdxαk ∧ dxI
α. This proves thatdα

satisfies (iii). As for (iv), ifω|Uα
=

∑
I fI dxI

α, then clearlydα(dαω) vanishes outsideUα, and onUα we have

dα(dαω) = dα


n∑

k=1

∑

I

∂ fI
∂xαk

dxαk ∧ dxI
α



=
∑

I


n∑

l=1

n∑

k=1

∂2 fI
∂xαl ∂xαk

dxαl ∧ dxαk

 ∧ dxI
α

=
∑

I


n∑

l=1

∑

k<l

(
∂2 fI

∂xαl ∂xαk
−

∂2 fI
∂xαk∂xαl

)
dxαl ∧ dxαk

 ∧ dxI
α = 0

since the mixed partials of the smooth functionfI are equal (of course in the second-to-last equation we’ve
switched the indicesk andl in the terms that initially hadk > l and used the fact thatdxαk ∧ dxαl = −dxαl ∧ dxαk ).
This proves (iv) and so completes the proof of the lemma. �

We now move from these local considerations to prove the global Theorem 4.14. We have fixed a (locally
finite) partition of unity{χα} subordinate to a coverUα. Then ifω ∈ Ω∗(M) we have

ω =
∑

α

(χαω) where each χαω ∈ Ω
∗
α(M).

So for eachα we have a well-defined differential formdα(χαω), whose support is contained in the support ofχα
(in particular any point inM has a neighborhood meeting the supports of only finitely manyof thedα(χαω), so
the sum

∑
α dα(χαω) is a well-defined differential form). So define

dω =
∑

α

dα(χαω).

This is clearlyR-linear since each of thedα are, and conditions (i), (ii), and (iv) are each also manifestly inherited
from the corresponding facts fordα (together, in the case of (ii), with the fact that the mapd: Ω0(M) → Ω1(M)
defined earlier in (5) is alsoR-linear). Condition (iii) (the form version of the Leibniz rule) takes just a little
more work. For eachα letψα be a smooth function which is equal to one onsupp(χα) but such that we still have
supp(ψα) ⊂ Uα. If ω ∈ Ωp(M) andφ ∈ Ωq(M), we have by definition

d(ω ∧ φ) =
∑

α

dα(χα(ω ∧ φ)).

Note thatχα(ω ∧ φ) = (χαω) ∧ (ψαφ) (both factors of which have support inUα), so

dα(χα(ω ∧ φ)) = dα(χαω) ∧ (ψαφ) + (−1)pχαω ∧ dα(ψαφ)

and so (freely using associativity and distributivity of the wedge product, as well as the fact thatψαφ = φ

whereverd(χαω) , 0)

d(ω ∧ φ) =
∑

α

dα(χαω) ∧ φ + (−1)pω ∧


∑

α

χαdα(ψαφ)



= (dω) ∧ φ + (−1)pω ∧


∑

α

χαdα(ψαφ)



So evidently it remains only to show that

(11)
∑

α

χαdα(ψαφ) =? dφ.
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Note also thatχαψα = χα andψαdχα = dχα, so

dα(χαφ) = dα(χαψαφ)

= χαdα(ψαφ) + dχα ∧ (ψαφ) = χαdα(ψαφ) + dχα ∧ φ,

i.e.

χαdα(ψαφ) = dα(χαφ) − dχα ∧ φ.

Thus
∑

α

χαdα(ψαφ) =
∑

α

dα(χαφ) −
∑

α

dχα ∧ φ

= dφ − d


∑

α

χα

 ∧ φ = dφ

since
∑
α dχα = 1 and sod

(∑
α χα

)
= 0.

This completes the proof thatd, as we have defined it, satisfies the desired properties. The formula (10) given
at the end of the theorem for the behavior ofd on an arbitrary coordinate chart then follows from Lemma 4.15:
If m ∈ U choose a cutoff function β : M → R equal to 1 on a neighborhood ofm and with compact support
contained inU; thenω = βω+ (1−β)ω and we have (d((1−β)ω))m = 0 while Lemma 4.15 ensures that (d(βω))m

is given by evaluating the right-hand side of (10) atm. �

It is not initially obvious that the formula ford given in the proof, namelydω =
∑
α dα(χαω), would give an

answer which is independent of the partition of unity{χα} or of the open cover{Uα}, but the uniqueness part of
the theorem implies that this independence property holds.

In practice, one does not calculatedω by choosing a partition of unity; rather one covers the manifold by
coordinate chartsU and uses the formula (10) to expressdω in each of these coordinate charts. Again, it is not
initially obvious that, ifV is another coordinate chart withU ∩ V = ∅, the forms obtained by using (10) with
reference to the two different coordinate charts would give both give the same answerwhen restricted toU ∩ V.
However, the theorem ensures that this is in fact the case (one can also verify this somewhat tediously by a direct
computation).

Sinced ◦ d = 0, we can make the following definition:

Definition 4.17. Let M be a smooth manifold, and p a nonnegative integer. Thepth de Rham cohomologyof M
is the real vector space

Hp
dR(M) =

ker(d: Ωp(M)→ Ωp+1(M))
Im(d: Ωp−1(M)→ Ωp(M))

.

(For the case p= 0, we regardΩ−1(M) as the trivial vector space, so that H0
dR(M) = ker(d: Ω0(M)→ Ω1(M)).)

Remark4.18. A form ω such thatdω = 0 is calledclosed, and a formω such thatω = dφ for someφ is called
exact. Thus the fact thatd ◦ d = 0 expresses that every exact form is closed, and thepth de Rham cohomology
group measures the extent to which it fails to be true that, conversely, every closedp-form is exact.

I would also like to record a fact which we will make use of shortly, and which basically was proven in the
proof of Theorem 4.14:

Proposition 4.19. Letω ∈ Ωp(M). Then we can writeω as a locally finite sumω =
∑
γ ωγ (i.e., any point has

an open set intersecting only finitely many of the supp(ωγ)) such that eachωγ is given by

ωγ = fγdg1,γ ∧ · · · ∧ dgp,γ

for some functions fγ,g1,γ, . . . ,gp,γ ∈ C∞(M).
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Proof. Let {Uα} be an open cover ofM by domains of coordinate charts (xα1 , . . . , x
α
n) and{χα} a (locally finite)

partition of unity subordinate to{Uα}. We can then writeω =
∑
α(χαω) where eachχαω is supported inUα.

In turn, it was shown in the proof of Lemma 4.15 that eachχαω can be written as a finite sum of forms of the
desired typefα,I dg1,α,I ∧ · · · ∧ dgp,α,I (asI varies over multi-indicesI = (i1, . . . , ip)), namely one setsg j,α,I = βxαi j

whereβ is a smooth function supported inUα and equal to 1 onsupp(χα). So by having the indexγ vary over
pairs (α, I ) the result follows.

�

To get a sense of what the exterior derivatived is measuring, it is instructive to consider the special cases
where the smooth manifold is an open subsetU of R2 orR3. As mentioned earlier, for any open subset ofRn the
degree-zero part ofd acts byd f =

∑n
i=1

∂ f
∂xi

dxi . So if we use the standard basis ofRn to identify vector fields with

1-forms2, the exterior derivative of a function is essentially itsgradientin the sense of multivariable calculus.
For open subsetsU ⊂ R2, the only remaining interesting part ofd is that acting on 1-forms. A general 1-form

onU has the shape

ω = P(x, y)dx+ Q(x, y)dy

for functionsP,Q ∈ C∞(U), and we see that

dω =
∂P
∂x

dx∧ dx+
∂P
∂y

dy∧ dx+
∂Q
∂x

dx∧ dy+
∂Q
∂y

dy∧ dy

=

(
∂Q
∂x
−
∂P
∂y

)
dx∧ dy.

So if we considerω as corresponding to the vector field with componentsP,Q, thendω is obtained by mul-
tiplying the standard 2-formdx∧ dy by what is sometimes called thescalar curlof this vector field,∂Q

∂x −
∂P
∂y , a

function which is probably familiar from Green’s theorem inmultivariable calculus.
Moving up a dimension to open subsetsU ⊂ R3, a general 1-form onU has the form

ω = Pdx+ Qdy+ Rdz,

and we find that in this case

dω =

(
∂R
∂y
−
∂Q
∂z

)
dy∧ dz+

(
∂P
∂z
−
∂R
∂x

)
dz∧ dx+

(
∂Q
∂x
−
∂P
∂y

)
dx∧ dy.

We see that the three coefficients above are the components of thecurl of the vector field〈P,Q,R〉.
Meanwhile, a general 2-form onU can be writtenη = Pdy∧ dz+ Qdz∧ dx+ Rdx∧ dy and so (because we

are working inR3) also corresponds to a vector field〈P,Q,R〉. We see that

dη =

(
∂P
∂x
+
∂Q
∂y
+
∂R
∂z

)
dx∧ dy∧ dz,

and recognize the coefficient from multivariable calculus as thedivergenceof the vector field〈P,Q,R〉.
Thus in dimension 3 the mapsd: Ω0(U)→ Ω1(U), d: Ω1(U)→ Ω2(U), andd: Ω2(U)→ Ω3(U) correspond

respectively to the gradient, curl, and divergence operators from multivariable calculus. The fact thatd ◦ d = 0
expresses the facts that the curl of a gradient is always zero, and that the divergence of a curl is always zero.

Again for open subsetsU ⊂ R3, the first de Rham cohomology groupH1
dR(U) will be zero if and only if,

conversely, every vector field whose curl is equal to zero is in fact the gradient of a function. You probably learned

2As I’ve emphasized elsewhere, on a general smooth manifold vector fields and 1-forms are different kinds of objects and one shouldn’t
try to identify them since they transform differently under coordinate changes, but onRn one can decide to only ever work in the standard
coordinate chart and then there won’t be any harm in making this identification
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in multivariable calculus that ifU is all of R3 then this statement holds. However ifU is more topologically
interesting it may not hold: for example there is the (misleadingly labeled) “dθ” form, given by

dθ =
xdy− ydx

x2 + y2

defined onU = {(x, y, z) ∈ R3|x2 + y2
, 0}, which you can verify to be closed, but which (despite the notation) is

not exact since it has nonzero integral around closed curveswhich enclose thez-axis (dθ wants to be the exterior
derivative of the polar coordinateθ, butθ is not a well-defined smooth function onU).

Similarly, the second de Rham cohomology group of an open subsetU ⊂ R3 vanishes if and only if every
vector field onU which has divergence equal to zero is in fact the curl of some other vector field. IfU = R3 then
this is true (we’ll prove a much more general statement not too long from now), but this statement is false for
U = R3 \ {(0,0,0)}. A standard example illustrating this is the form

η =
xdy∧ dz+ ydz∧ dx+ zdx∧ dy

(x2 + y2 + z2)3/2

Physically,η corresponds to the electric field onR3 \ {(0,0,0)} generated by a point charge located at the origin.
The statement that this vector field is not the curl of anothervector field can be shown using Stokes’ theorem, by
taking the flux integral of the vector field over a sphere around the origin. Later we’ll develop language for this
that generalizes such arguments substantially and stays within the realm of differential forms rather than vector
fields.

Exercise4.20. (A coordinate-free formula ford): Let M be a smooth manifold,ω ∈ Ωp(M), and letX(0), . . . ,X(p)

be vector fields onM. Prove that

(dω)(X(0), . . . ,X(p)) =
p∑

i=0

(−1)iX(i)
(
ω(X(0), . . . , X̂(i), . . . ,X(p))

)
+
∑

i< j

(−1)i+ jω
(
[X(i),X( j)],X(0), . . . , X̂(i), . . . , X̂( j), . . . ,X(p)

)
.

(To clarify the notation, if we have a differentialq-form α and vector fieldsY(1), . . . ,Y(q), the function

m 7→ αm(Y(1)
m , . . . ,Y(q)

m )

is a smooth function, which we denote byα(Y(1), . . . ,Y(q)). In particular since vector fields are derivations on the
space of smooth functions, ifZ is another vector field we get another smooth function given by Z

(
α(Y(1), . . . ,Y(q))

)
.

To do this problem, I would suggest first showing that the value of the function on the right-hand side at a pointm
is unchanged if some (or all)X(i) are replaced by another vector field̄X(i) such thatX(i)

m = X̄(i)
m , and then proving

the result when theX(i) are (at least on a neighborhood of a given point) equal to standard coordinate vector
fields.)

4.3. Pullbacks of differential forms and the naturality of d. Let φ : M → N be a smooth map between two
smooth manifolds. Recall then that for eachm ∈ M we have a derivative mapφ∗ : TmM → Tφ(m)N, defined in
terms of the derivation formalism by the simple formula

(φ∗v)( f ) = v( f ◦ φ)

wheneverf is a germ of aC∞ function defined nearφ(m) ∈ N. As described just before Proposition 4.7, this
induces for allm ∈ N a pullback operation

φ∗ : ΛpT∗φ(m)N→ Λ
pT∗mM

by setting, forα ∈ ΛpT∗φ(m)N andv1, . . . , vp ∈ TmM,

(φ∗α)(v1, . . . , vp) = α(φ∗v1, . . . , φ∗vp).

In particular, whenp = 1, so thatΛpT∗pM is just the cotangent spaceT∗pM, φ∗ coincides with the adjoint map
to φ∗ from linear algebra.
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Theorem 4.21. Let φ : M → N be a smooth map and letω ∈ Ωp(M) be a differential form. Define a section
φ∗ω ofΛpT∗M by

(φ∗ω)m = φ
∗(ωφ(m)).

Thenφ∗ω is a differential form on M, and

(12) d(φ∗ω) = φ∗(dω).

The fact thatφ∗ω is a differential form requires proof, since there is a smoothness condition to check. In case
p = 0 (so thatω ∈ C∞(M)) the definition above should be read as saying that

φ∗ω := ω ◦ φ (if ω ∈ Ω0(M)).

Proof. Step 1: We prove the theorem when p= 0. Let h ∈ Ω0(M) = C∞(N) be a 0-form. By definitionφ∗h = h◦φ,
which is certainly a smooth function (i.e. a 0-form) onM since compositions of smooth functions are smooth.
For all v ∈ TmM we have, by the definition ofd on 0-forms:

(d(φ∗h))m(v) = v(φ∗h) = v(h ◦ φ) = (φ∗v)(h) = (dh)φ(m)(φ∗v) = (φ∗dh)m(v).

This confirms thatd(φ∗h) = φ∗dh (It also confirms thatφ∗dh satisfies the smoothness condition required of a
1-form, sinced(φ∗h) certainly does so.)

Step 2: We prove the theorem in caseω = f dg1 ∧ · · · ∧ dgp for some f,g1, . . . ,gp ∈ C∞(N). In this case, if
m ∈ M, we have (using Proposition 4.7 and Step 1)

(φ∗ω)m = f (φ(m))φ∗
(
(dg1)φ(m) ∧ · · · ∧ (dgp)φ(m)

)

= ( f ◦ φ)(m)
(
(φ∗dg1)m∧ · · · ∧ (φ∗dgp)m

)

= ( f ◦ φ)(m)
(
d(g1 ◦ φ)m∧ · · · ∧ d(gp ◦ φ)m

)
,

i.e.
φ∗ω = ( f ◦ φ)d(g1 ◦ φ) ∧ · · · ∧ d(gp ◦ φ).

Now the space of differential forms is closed under wedge product (as the smoothness condition is easily seen to
be preserved), and the zero-formf ◦φ and the 1-formsd(gi ◦φ) are all differential forms by what we have already
done, so this proves thatφ∗ω is a differential form. Using the Leibniz rule and the fact thatd2 = 0 we see that

d(φ∗ω) = d
(
( f ◦ φ)d(g1 ◦ φ) ∧ · · · ∧ d(gp ◦ φ)

)

= d( f ◦ φ) ∧ d(g1 ◦ φ) ∧ · · · ∧ d(gp ◦ φ)

= (φ∗d f) ∧ (φ∗dg1) ∧ · · · ∧ φ∗(dgp)

= φ∗
(
d f ∧ dg1 ∧ · · · ∧ dgp

)

= d
(
f dg1 ∧ · · · ∧ dgp

)
= dω.

Step 3: We prove the result in general.By Proposition 4.19, any differential formω ∈ Ωp(N) can be written
as a locally finite sum of forms of the type considered in Step 2. Now the smoothness condition required of a
differential form is preserved under locally finite sums (since the smoothness of a function can be checked by
looking at its restriction to each member of an open cover, wecan reduce to the case of genuinely finite sums),
so using the linearity ofφ∗ it follows thatφ∗ω is a differential form. Similarly theR-linearity of d, together with
Step 2, implies thatdφ∗ω = φ∗dω �

Corollary 4.22. A smooth mapφ : M → N between two smooth manifolds induces by the pullback operation a
mapφ∗ : Ω∗(N) → Ω∗(M). If ω ∈ Ω∗(N) is closed, thenφ∗ω ∈ Ω∗(M) is closed, and ifω ∈ Ω∗(N) is exact, then
φ∗ω ∈ Ω∗(M) is exact

Proof. The first sentence has already been proven. Ifω is closed,i.e. dω = 0, thend(φ∗ω) = φ∗dω = φ∗0 = 0. If
ω is exact,i.e.ω = dη for someη ∈ Ω∗(N), thenφ∗ω = φ∗dη = d(φ∗η). �
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Recall that we have defined thepth de Rham cohomology of a smooth manifoldM as the quotient vector
space

Hp
dR(M) =

{closedp-forms}
{exactp-forms}

.

If we write H∗dR(M) = ⊕∞p=0Hp
dR(M), the wedge-product induces aring structure onH∗dR(M): if a ∈ Hp

dR(M) and
b ∈ Hq

dR(M), then we can find closed formsω ∈ Ωp(M), η ∈ Ωq(M), representing the classesa andb. Then
d(ω∧η) = (dω)∧η+ (−1)pω∧ (dη) = 0, soω∧η represents some cohomology class (denoteda∪b) in Hp+q

dR (M).
Moreover this cohomology class is independent of our particular choice of representativesω andη—for example
if we replacedω by some other form ¯ω = ω + dα, then

ω̄ ∧ η = (ω + dα) ∧ η = ω ∧ η + (dα) ∧ η = ω ∧ η + d(α ∧ η)

(we’ve used thatdη = 0), i.e. the de Rham cohomology class of ¯ω∧ η is the same as that ofω∧ η (they differ by
an exact form).

Using Proposition 4.6, one easily checks that this multiplication onH∗dR(M) (called thecup product) gives
H∗dR(M) the structure of an associative, graded commutativeR-algebra.

Corollary 4.23. If M and N are smooth manifolds andφ : M → N is a smooth map, we obtain a homomorphism
of gradedR-algebras (in particular a ring homomorphism)φ∗ : H∗dR(N)→ H∗dR(M) by settingφ∗[ω] = [φ∗ω] for
any closed formω on N. Ifφ is a diffeomorphism thenφ∗ is an isomorphism.

Proof. The first sentence follows directly from various things thatwe have already done (check this for yourself
if it’s not clear). For the second, note thatφ∗ (acting either on forms or on cohomology) satisfies the functoriality
conditions (Id)∗ = (Id) and (φ ◦ ψ)∗ = ψ∗ ◦ φ∗ (note the order on the right hand side, reflecting thatφ∗ “goes
in the opposite direction” toφ). From this it follows immediately that ifφ is a diffeomorphism thenφ∗ is an
isomorphism with inverse (φ−1)∗. �

Exercise4.24. If M is a smooth manifold, give an explicit formula, in terms of the point-set topology ofM,
for the degree-zero de Rham cohomologyH0

dR(M). (As a point of convention, since there is no such thing as a
(−1)-form, we regard the exact 0-forms onM to consist only of 0.)
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1. SUBMANIFOLDS

Throughout this section fix a smooth m-dimensional manifold M .

Definition 1.1. Let N be a smooth manifold and let φ : N → M be a smooth map. Then

• φ is called a submersion if, for all x ∈ N , the linearization φ∗ : Tx N → Tφ(x)M is
surjective.
• φ is called an immersion if, for all x ∈ N , the linearization φ∗ : Tx N → Tφ(x)M is

injective.
• φ is called an embedding if it is an immersion and, moreover, the map φ is a homeo-

morphism from N to φ(N), where φ(N) is equipped with the subspace topology.

Here are some examples; if these notions are unfamiliar to you then you should check for
yourself that they satisfy the respective definitions.

Example 1.2. (i) The projectionπ: Rn→ Rm onto the first m coordinates (assuming m≤ n)

is a submersion; in fact this provides a local model for all submersions, as will follow

from the proof of Theorem 1.8. For a more interesting global example, the projection

π: Rn+1 \ {~0} → RPn is a submersion (as is the projection Sn→ RPn).

(ii) Dually, if n ≤ m, then the inclusion i : Rn → Rm (defined by i(~x) = (~x , ~0) where Rm is

split as Rn ×Rm−n) is an example of an embedding.

(iii) A simple example of an immersion which is not an embedding is the map φ : R→ C given

by φ(x) = ei x .

(iv) Of course the problem with (iii) was that it wasn’t injective, but one can also construct

examples of injective immersions which are not embeddings. For instance, take two smooth

functions f , g : R → R such that for all t < 0 one has f (t) = t and g(t) = 0, and

such that there is no t ∈ R such that f ′(t) = g ′(t) = 0. Then the map φ : R → R2

defined by φ(t) = ( f (t), g(t)) will be an immersion. If one chooses f and g so that

limt→∞ f (t) = −1 and limt→∞ g(t) = 0 and so that φ is injective (as can easily be done—

you might draw a picture if this isn’t obvious to you), then φ won’t be an embedding, since

by looking at neighborhoods of (−1, 0) in ψ(R) one sees that the image isn’t a topological

manifold when equipped with the subspace topology.

Declare two embeddings φ1 : N1 → M and φ2 : N2 → M to be equivalent if there is a dif-
feomorphism ψ: N1 → N2 such that φ1 = φ2 ◦ψ. An overly formal definition of a subman-

ifold is that a submanifold is an equivalence class of embeddings under this equivalence re-
lation. Of course, part of the point of the above equivalence relation is that if φ1 ∼ φ2 then
φ1(N1) = φ2(N2); when one thinks of a submanifold one should think of the subset of M formed
as the image of any representative embedding. If one has a subset N ⊂ M , it inherits a subspace
topology, and one can ask whether or not this subspace topology makes N a topological mani-
fold. One can then ask whether the topological space N admits smooth structures (this is now
an intrinsic question about N), and how these are related to the ambient space M . Accordingly
I prefer the following definition:

1
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Definition 1.3. A submanifold of M is a subset N which is a topological manifold with respect
to its subspace topology, equipped moreover with a smooth structure such that the inclusion
i : N → M is an embedding.

This is equivalent to the definition using equivalence classes of embeddings: if φ1 : N1→ M

and φ2 : N2 → M are equivalent embeddings (with common image N ⊂ M) then one can get

a smooth atlas on N by constructing charts by precomposition with either φ−1
1

: N → N1 or

φ−1
2

: N → N2 (since φ1 ∼ φ2 the atlases so obtained will be equivalent), and with this atlas the
inclusion i : N → M will be a distinguished member of the equivalence class of φ1 and φ2. So
we can (and do) identify the equivalence class with this distinguished member.

Accordingly let N ⊂ M be a submanifold, with i : N → M the inclusion. In particular i is an
immersion, so for each x ∈ N we have an induced injective linear map i∗ : Tx N → Tx M . We
can then identify Tx N with its image under this map—in other words, for every x ∈ N we have
a natural identification of Tx N with a subspace of Tx M .

Theorem 1.4. If N ⊂ M is a submanifold where dim N = n and dim M = m and x0 ∈ N, there

exists a coordinate chart φ : U → Rm for M such that x0 ∈ U and φ−1(Rn × {~0}) = N ∩ U.

Proof. As can easily be seen from the definition of the subspace topology, there is a neighborhood
U0 ⊂ M of x0 which is the domain of a coordinate chart φ0 : U0 → R

m for M , such that where
V0 = U0∩N , V0 is the domain of some coordinate chartψ0 : V0→ R

n for N . By replacingφ0 and
ψ0 by their compositions with translations we may as well assume that φ0(x0) and ψ0(x0) are
the origins of Rm and Rn respectively. Also, by composing φ0 with an appropriate linear map,

we may as well assume that the composition φ0 ◦ψ
−1
0

: ψ0(V0)→ φ0(U0) (which is a smooth
map with injective linearization from a neighborhood of the origin in Rn to a neighborhood of
the origin in Rm) has the property that its linearization at 0 is given by ~v 7→ (~v, 0) where we
split Rm as Rn ×Rm−n.

Now define a map α: ψ0(V0)×R
m−n → Rn by α(x , y) = (φ0 ◦ψ

−1
0
)(x) + (~0, y). This map

α is C∞, and its linearization at (~0, ~0) is the identity. The inverse function theorem from mul-

tivariable calculus then asserts that α is a local diffeomorphism near ~0, i.e. that there is a
neighborhood W of the origin in Rm and a smooth map β : α(W )→W so that β ◦α: W →W

and α ◦ β : α(W )→ α(W ) are the respective identities.

Now set U = φ−1
0
(α(W )) ⊂ M and φ = β ◦φ0. φ is a composition of two maps which are

diffeomorphisms to their images in Rm, so φ is a coordinate chart in M (in the maximal atlas
for M). Moreover since by construction we have α(ψ0(V0) × {0}) = φ0(N ∩ U0), we see that
β(φ0(N ∩U)) =W ∩ (ψ0(V0)×{0}). In other words, φ maps the points of its domain which lie
in N precisely to the points of its range (namely W ) which lie in Rn × {0}, as desired. �

Remark 1.5. Conversely, suppose that N ⊂ M is a subset such that every point x0 ∈ N is con-
tained in a coordinate chart for M as in Theorem 1.4, so there is an M -neighborhood U for x0

and a coordinate chart φ : U → Rm so that φ−1(Rn × {0}) = N ∩ U . For any such coordinate
chart φ, the restriction φ|N∩U is a homeomorphism to an open subset of Rn × {0} ∼= Rn; this
shows that N is a topological manifold. Moreover if φα : Uα → R

m and φβ : Uα : Uβ → R
n

are two such coordinate charts, so that by restricting φα,φβ to Uα ∩ N and Uβ ∩ N we obtain

homeomorphisms ψα,ψβ from open subsets of N to open sets in Rn, then the transition map

ψβ ◦ψ
−1
α is just the restriction to φα(Uα∩ (R

n×{0})) of φβ ◦φ
−1
α , which is smooth. This proves

that such charts ψα give N the structure of a smooth manifold. Since in terms of the charts
ψ and φ the inclusion i : N → M is just given my the inclusion of Rn into Rm as the first n

coordinates, i is an immersion. Thus, as a converse to Theorem 1.4, a subset of M which can
be covered by charts of the type described there is a submanifold of M .
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If N is a submanifold of M andφ : U → Rm is a chart as in Theorem 1.4, note that if we define
a map f : U → Rm−n by taking the last m− n coordinates of φ (i.e., f = (xm+1, . . . , xn)), then

f : U → Rm−n is a submersion and f −1({~0}) = N ∩ U . Moreover, within U , the tangent space
to N is given by the kernel of the linearization of f . This is a sort of converse to an important
method of constructing submanifolds.

To prepare for this, we make the following definitions:

Definition 1.6. Let f : M → P be a smooth map between two smooth manifolds.

• A critical point of f is a point x ∈ M such that the linearization f∗ : Tx M → T f (x)P is
not surjective.
• A critical value of f is a point y ∈ P such that y = f (x) for some critical point x of f .
• A regular value of f is any point y ∈ P which is not a critical value.

Note in particular that a point y ∈ P which is not in the image of f is still a regular value.
An important fact, which we will not prove, is the following:

Theorem 1.7 (Sard’s Theorem). If f : M → P is a smooth map between two smooth manifolds

then the set of critical values of f has measure zero in P.

(To make sense of this statement one has to know what “measure zero” means for a subset
of a smooth manifold—to interpret this, note that a diffeomorphism between two open sets
in Euclidean space preserves the class of sets of measure zero (even though it generally isn’t
measure preserving), so we can define a set of measure zero in a smooth manifold to be one
whose intersection with the domain of every coordinate chart is mapped by that coordinate
chart to a set of measure zero. If you prefer a statement that does not appeal to measure theory,
it is also true that the set of regular values is residual in the sense of Baire—i.e., it contains a
countable intersection of open dense sets.)

Note that if dim M < dim P and f : M → P is smooth, then since the linearization of f is
never surjective every point of f (M) ⊂ P is a critical value. So in this case Sard’s theorem
amounts to the statement that f (M) has measure zero in P, i.e. that the image of f misses
almost every point of P.

Whether we find a regular value of f by appealing to Sard’s theorem or by directly examining
the map, the following gives a useful way of producing submanifolds:

Theorem 1.8. Let f : M → P be a smooth map between two smooth manifolds and let y0 ∈ P be

a regular value. Then N = f −1({y0}) is a submanifold of M. Moreover if n0 ∈ N then Tn0
N =

ker( f∗ : Tn0
M → T f (n0)

P). (In particular, dim N = dim M − dim P.)

Proof. Let m = dim M , and p = dim P, and n0 ∈ N . Let (y1, . . . , yp): V → Rp be a coordinate

chart for P around f (n0) which sends f (n0) to the origin For i = 1, . . . , p define zi : f −1(V )→ R
by zi = yi ◦ f . By the surjectivity of f∗ at n0, we may choose tangent vectors v1, . . . , vp ∈ Tx0

M

so that dzi(v j) = d yi( f∗v j) = δi j . Let S ≤ Tn0
M be the span of v1, . . . , vp. We may then choose

linearly independent cotangent vectors αp+1, . . . ,αm ∈ T ∗
n0

M so that each αi |S = 0. Let φ =

(x1, . . . , xm): U → Rm be a coordinate chart around n0. In terms of these coordinates, the

cotangent vectors αi at n0 can be written as
∑m

k=1
αkid xk for some real numbers αki . Define

functions zp+1, . . . , zm : U → R by zi =
∑m

k=1
αki xk.

We now claim that the functions z1, . . . , zm together provide a coordinate chart on a neighbor-
hood of n0. First note that the covectors (dz1)|n0

, . . . , (dzm)|n0
are linearly independent elements

of T ∗
n0

M . For if
∑

cidzi were to vanish at n0, then by evaluating both sides on v j for j = 1, . . . , p

we obtain that c1 = · · · = cp = 0, from which it also follows that cp+1 = · · · = cm = 0 since

we chose the αi = (dzi)|n0
for i ≥ p + 1 to be linearly independent. Since the dzi are linearly
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independent at n0, they form a basis for T ∗
n0

M by a dimension count, and in particular there is a

unique, bijective linear map of T ∗
n0

M which sends (dzi)n0
to (d x i)n0

for i = 1, . . . , m. But the this

linear map is the transpose of the Jacobian atφ(n0) of the map which sends (x1, . . . , xm) ∈ φ(U)
to (z1, . . . , zm), and so the Jacobian of this map F : (x1, . . . , xn) 7→ (z1, . . . , zn) is invertible at
φ(n0). So by the inverse function theorem there is an open set W around φ(n0) so that F |W is
a diffeomorphism to its image. Recalling that φ = (x1, . . . , xm) was a coordinate chart for M ,

it follows from this that (z1, . . . , zm): φ
−1(W )→ Rn is a diffeomorphism to its image, and so it

contained in the maximal atlas defining the smooth structure on M .

So given a point n0 ∈ N ⊂ M , we have constructed coordinate charts φ̃ : φ−1(W ) → Rm

around n0 and (y1, . . . , yp): V → Rp around f (n0) in terms of which the map f is given by

(z1, . . . , zm) 7→ (z1, . . . , zp). In particular for any such coordinate chart N ∩W is, in local coor-

dinates, given by the preimage under the coordinate chart of {0} ×Rm−p. By Remark 1.5, this
suffices to establish that N is a submanifold of M . �

Theorem 1.9. Let K be a compact subset of a smooth manifold M. Then there exists an open set

V ⊂ M with K ⊂ V , a positive number q, and an embedding ψ: V → Rq. In particular if M is a

compact manifold then there is an embedding ψ: M → Rq for some q.

Remark 1.10. In fact the compactness assumption is not necessary—any smooth manifold M

embeds into Euclidean space of some dimension q, and indeed a result called the Whitney

Embedding Theorem implies that one can take q = 2dim M (Whitney also showed that RP2k

does not embed in any Euclidean space of dimension less than 2 ·2k, so this is generally the best
one can do).

Proof. Write m = dim M . Any point x ∈ K is contained in the image of a surjective coordinate

chart φ(x) : U (x) → Bm(2) with φ(x)(x) = ~0 (where Bm(2) denotes the open ball of radius 2

around the origin in Rm). If we write V (x) = (φ(x))−1(Bm(1)), then the V (x) still cover K , and

so by compactness they have a finite subcover {V (x1), . . . , V (xn)}. Rename the V (x i), U (x i), and

φ(x i) as Vi , Ui ,φi . For each i let χi : M → [0, 1] be a smooth function such that χ−1
i
(1) = V̄i

and which is supported in Ui . Also, define ψi : M → Rn by ψi(x) = χi(x)φi(x) if x ∈ Ui and
ψi(x) = 0 otherwise; of course this is smooth since χi is supported in Ui . Now define

ψ: M → Rn(m+1)

by

ψ(x) =
�
χ1(x),ψ1(x),χ2(x),ψ2(x), . . . ,χn(x),ψn(x)

�

I claim that the restriction of ψ to the open subset V = ∪n
i=1

Vi is an embedding.

First,ψ|V is an immersion. For if x ∈ V then V ∈ Vi for some i, and since m of the coordinates
of ψ(x) are given by ψi(x) and ψi : Vi → Bm(1) is (the restriction of) a coordinate chart, if we
had ψ∗v = 0 for some v ∈ Tx M then it would hold that (ψi)∗v = 0 and so v = 0. We must
now show that ψ|V is a homeomorphism to its image. Of course ψ is continuous since all of its
coordinates are. To see that ψ|V is injective, suppose that ψ(x) = ψ(y). For some i we have
x ∈ Vi , so χi(x) = 1, and so χi(y) = 1. We chose χi to be 1 precisely on V̄i , so this forces y ∈ V̄i .
But then since ψ(x) = ψ(y) and x , y ∈ V̄i ⊂ Ui we have φi(x) = ψi(x) = ψi(y) = φi(y),
forcing x = y since φi is a coordinate chart on Ui .

Finally we must show that the inverse ofψ|V : V →ψ(V ) is continuous. Let x ∈ V ; we should

show that for any neighborhood W of x there is an open set in Rn(m+1), containingψ(x), whose
preimage underψ is contained in W . To do this, let i be such that x ∈ Vi , and let ε > 0 be small
enough that the preimage under φi of the ball of radius 2ε around φi(x) is contained in W ∩Vi .
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If δ > 0, there is an open set W ′ ⊂ Rn(m+1) so that

(ψ|V )
−1(W ′) = {y ∈ V |χi(y)> 1−δ, |ψi(y)−ψi(x)|< ε}.

If we take δ = 2

2+ε
, any y ∈ (ψ|V )

−1(W ′) belonging to this latter set will obey

|φi(y)−φi(x)|=

����
1

χi(y)
φi(y)−φi(x)

����

≤

����
1

χi(y)
− 1

���� |φi(y)|+ |φi(y)−φi(x)|<
ε

2
2+ ε= 2ε

and so y will belong to W , as desired.
�

2. VECTOR BUNDLES AND TUBULAR NEIGHBORHOODS

A vector bundle E of rank k over a smooth manifold M is, to be brief (and to leave out some
important details), a family of vector spaces Ex parametrized by the points x ∈ M .

More precisely:

Definition 2.1. Let M be a smooth manifold, and k a positive integer. A (smooth, real) vector

bundle of rank k over M is a smooth map π: E → M where E is a smooth manifold, with the
following additional structure

• For all x ∈ M , the preimage π−1({x}) (also denoted Ex) has the structure of a real
vector space of dimension k.

• There is an open cover ∪αUα of M and, for each α, a diffeomorphism Φα : π−1(Uα)→
Uα × R

k such that, for each x ∈ Uα, Φα restricts to Ex as a linear isomorphism to the

vector space {x} ×Rk.

For a definition more closely analogous to our definition of a smooth manifold, and in order
to resolve concerns about uniqueness, one could insist that the collection of transition functions
is maximal; just as in the smooth manifold case any collection of local trivializations as in the
definition can be enlarged in a unique way to a maximal such collection.

The vector space Ex is called the fiber of E at x , and the Φα are called local trivializations of
E over Uα. Note that the map π: E→ M is automatically a surjective submersion.

The smooth manifold E carries a distinguished copy of M embedded inside it as the zero

section 0M , whose intersection with each Ex consists of just the zero element of the vector space

Ex (in terms of the local trivializations, 0M = ∪αΦ
−1
α (Uα × {0})).

Example 2.2. If M is a smooth m-dimensional manifold then the tangent bundle π: T M → M

is a vector bundle of rank m. For all intents and purposes we showed this in the first part of the

course: M is covered by coordinate charts (xα
1
, . . . , xα

n
): Uα→ R

m, and for a local trivialization of

T M over Uα we can take the inverse of the map Uα×R
k→ π−1(Uα) which sends (x , v1, . . . , vm) to

the tangent vector
∑m

i=1
vi

∂

∂ x i

at x.

Example 2.3. Let f : N → M be a smooth map between two smooth manifolds, and let π: E →
M be a vector bundle. We can then form the pullback bundle Π : f ∗E → N as follows. Set

theoretically, define

f ∗E =
�
(n, e) ∈ N × E|e ∈ E f (n)

	
.

We have local trivializations Φα : π−1(Uα) → Uα × R
k; for x ∈ Uα define φαx : Ex → R

k to

be the linear isomorphism such that for e ∈ Ex we have Φα(e) = (x ,φαx(e)). Now for each α
define Ψα : Π−1( f −1(Uα)) → f −1(Uα) by, for e ∈ Π−1(n) where n ∈ f −1(Uα), setting Ψα(e) =
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(n,φα f (n)(e)). Now the various f −1(Uα) cover N, and it’s not hard to check that there is a unique

smooth structure imposed on f ∗E by requiring that the maps Ψα be diffeomorphisms. This gives

the map Π : f ∗E→ N the structure of a vector bundle, and we have a commutative diagram

f ∗E //

Π

��

E

π

��

N
f

// M

where the upper map just sends (n, e) ∈ f ∗E ⊂ N × E to e, and maps fibers of f ∗E isomorphically

to fibers of E.

As an important special case, we can let f be the inclusion of a submanifold N ⊂ M. In this case

f ∗E is more often just denoted by E|N . In particular, we have T M |N , the restriction of the tangent

bundle of the ambient manifold M to the submanifold N; its fiber over n ∈ N consists of the whole

tangent space TnM.

Example 2.4. If N ⊂ M is a submanifold we have the vector bundles T N and T M |N ; these give

rise to a third vector bundle over N, the normal bundle νN ,M → N, whose fiber over a point n ∈ N

is naturally identified with
Tn M

TnN
. Perhaps the easiest way of constructing this bundle is to make use

of the adapted coordinate charts from Theorem 1.4. We cover a neighborhood of N in M by charts

φα : Uα → R
m, such that for each α we have Uα ∩ N = φ−1

α ({0} × R
n). So the ψα := φα|Uα∩N

form an atlas for N. Let π1 : Rm→ Rm−n be the projection onto the first m− n coordinates. So if

v ∈ TnN where n ∈ Vα, then since φα sends N to {0} ×Rn, we will have (borrowing the notation

of the previous example) π1 ◦ φαnv = 0. Thus π1 ◦ φαn descends to a linear isomorphism from

(νN ,M )n to Rm−n. Consequently the π1 ◦ φαn give rise to local trivializations over Vα for νN ,M ,

confirming that νN ,M is a vector bundle (again, to get the smooth manifold structure on νN ,M one

can just require that these local trivializations are diffeomorphisms).

Note that, if dim M = m and dim N = n, then the rank of νN ,M is m−n, and so the dimension of

νN ,M as a smooth manifold is n+(m−n) = m, the same as the dimension of the ambient manifold.

The tubular neighborhood theorem (Theorem 2.11) will show that, in fact, νN ,M is diffeomorphic

to an open neighborhood of N in M.

Remark 2.5. It is possible to formulate the notion of a subbundle of a vector bundle, and then
show quite generally that if F ≤ E is a subbundle then one can form the quotient bundle E/F
(with fiber over x canonically identified with Ex/Fx). In the case of a submanifold N ⊂ M , one
can show that T N is a subbundle of T M |N , and so the normal bundle can be identified with the
quotient bundle of the latter by the former.

Definition 2.6. An orthogonal structure on a vector bundle π: E→ M is a map

〈·, ·〉: ∪x∈M (Ex × Ex)→ R

whose restriction to each Ex × Ex defines an inner product on Ex , and such that whenever
s1, s2 : M → E are two smooth sections (i.e. smooth maps so that π ◦ si = 1M ), the map x 7→
〈s1(x), s2(x)〉 is smooth.

In other words, an orthogonal structure is a smoothly varying family of inner products on the
fibers of E. In the case that E is the tangent bundle T M of M an orthogonal structure on T M is
called a Riemannian metric on M . (Indeed, sometimes one uses the term “Riemannian metric”
to refer to an orthogonal structure on any vector bundle.)

Proposition 2.7. If π: E→ M is a vector bundle there exists a orthogonal structure on E.
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Proof. Recall that the vector bundle structure on E gives us an open cover {Uα} of M and dif-

feomorphisms Φα : π−1(Uα) → Uα × R
k which commute with the projections to Uα and re-

strict to the fibers Ex as a linear isomorphism φαx to Rk. So if we denote the standard inner

product on Rk by (·, ·)0 we can define 〈, ·, ·〉α : ∪x∈Uα
Ex × Ex → R by, for e1, e2 ∈ Ex , setting

〈e1, e2〉α =
�
φαx e1,φαx e2

�
0
.

Now let {χα} be a partition of unity subordinate to the cover {Uα} and define 〈·, ·〉: ∪x∈E Ex×
Ex → R to be equal to

∑
αχα(x)〈·, ·〉α, where we have extended χα(x)〈·, ·〉α by zero outside of

Uα. Since convex combinations of inner products on vector spaces are still inner products, it’s
easy to see that this satisfies the requirements. �

Note that an orthogonal structure 〈·, ·〉 on E gives rise to a smooth function ‖·‖2 : E→ [0,∞)
defined by ‖e‖2 = 〈e, e〉. The square root of this function, ‖ · ‖: E → R, is smooth on the
complement of the zero section.

Using orthogonal structures one can show:

Proposition 2.8. Let π: E → M and let U be any neighborhood of the zero section 0M . Then

there is an open set V with 0M ⊂ V ⊂ U and a diffeomorphism ψ: E → V which restricts to the

identity on 0M .

Thus the entire total space of a vector bundle can be shrunk by a diffeomorphism to an
arbitrarily small neighborhood of the zero-section. This is basically a parametrized version of

the statement that Rk is diffeomorphic to an arbitrarily small ball around the origin.

Proof of Proposition 2.8. This is easier if M is compact, since then there is r > 0 such that the

open set V = Er = {e ∈ E|‖e‖2 < r2} is contained in U . (Proof: The subset Ē1 := {‖e‖2 ≤ 1} is
in this case also compact, as one can see by writing it as a union of compact sets obtained from
a finite cover by local trivializations, so Ē1 \U is also compact. If the statement were false then

one could find a sequence ei ∈ Ē1 \U with ‖ei‖
2→ 0. But since Ē1 \U is compact a subsequence

of the ei would converge to some e, which would have the contradictory properties that ‖e‖= 0
and e /∈ U .) In this case one can choose a diffeomorphism f : [0,∞) → [0, 1) such that f is

equal the identity on a neighborhood of the origin (for instance, take f (t) =
∫ t

0
g(s)ds where

g(s) = 1 for small s, g(s)> 0 for all s and
∫∞

0
g(s) = 1). Then define ψ: E→ V by

ψ(e) = r f (‖e‖)
e

‖e‖

(so ψ rescales each fiber in such a way that a point with norm n now has norm r f (n)). This is
easily seen to satisfy the required properties (the only place where smoothness either of ψ or

ψ−1 might seem to be an issue is at the zero section, but in fact we have arranged for ψ to be
just scalar multiplication by r on a neighborhood of the zero section).

If M is noncompact then there might not be a single number r > 0 as above. However, we

shall construct below a smooth function r : M → (0,∞) so that V := {e ∈ E|e ∈ Ex ⇒ ‖e‖
2 <

r(x)2} is contained in the given open set U . If we can do this, then a simple modification of the
ψ constructed above works: just define ψ(e) = r(x) f (‖e‖) e

‖e‖
for e ∈ Ex ; since r is smooth and

positive (as, therefore, is 1

r
) this ψ will be a diffeomorphism from E to V just as before.

To construct the desired r : M → (0,∞)we can just proceed as follows. Cover M by open sets
Oβ such that Ōβ is compact. Then for each β there will, as earlier, be a number rβ > 0 so that

if x ∈ Ōβ and e ∈ Ex has ‖e‖ < rβ then e ∈ U . Now let {χβ} be a partition of unity subordinate

to {Oβ} and let r(x) =
∑
β rβχβ (x). For each x , r(x) will then be a convex combination of
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those rβ with x ∈ Oβ , and hence will be less than or equal to one of them, so any e ∈ Ex with

‖e‖< r(x) will lie in U . �

Definition 2.9. Let N ⊂ M be a submanifold. A tubular neighborhood of N in M consists of an
open subset U ⊂ M with N ⊂ U , and a diffemorphism Φ : νN ,M → U , where νN ,M is the normal
bundle of N in M , such that the restriction of Φ to the zero section N ∼= 0N ⊂ νN ,M is the identity
map to N .

Remark 2.10. In view of Proposition 2.8, to construct a tubular neighborhood it is enough to
construct a diffeomorphism Φ′ : U ′ → U restricting as the identity on N , where U ′ ⊂ νN ,M

is some neighborhood of the zero section. For then we can find a subneighborhood V ⊂ U ′

and a diffeomorphism ψ: νN ,M → V as in Proposition 2.8, and then Φ′ ◦ψ will give a tubular

neighborhood (with image Φ′(U ′), which will still be an open neighborhood of N in M).

The rest of this section will be concerned with proving the following:

Theorem 2.11. If N ⊂ M is any compact submanifold then there exists a tubular neighborhood

of N in M.

(In fact, the compactness assumption is not strictly necessary–its main role in the proof given
here will be to allow us to embed a neighborhood of N in M intoRq for some q, and as mentioned
after Theorem 1.9 this can be done without the compactness assumption. Near the end of the
proof we will also use the compactness of N to find the limit of a sequence, but one can get
around this as long as one arranges for the embedding of M into Rq to be proper, as can be
arranged in the Whitney embedding theorem.) To construct the tubular neighborhood, one
needs some systematic way of “moving in directions normal to N in M .” There are two common
ways of doing this—either by choosing a Riemannian metric on M and using the theory of
geodesics, or by embedding a neighborhood of N in M into Euclidean space and using the
special structure of Euclidean space. To avoid a digression into Riemannian geometry, we’ll
take the latter approach.

Throughout the following discussion, for x ∈ Rq we will make the standard identification
of TxR

q with Rq (and so if X ⊂ Rq is a submanifold and x ∈ X then Tx X is identified with a
subspace of Rq).

To begin the proof of the theorem note that we may as well replace M by a small neighbor-
hood of the compact submanifold N , and then by Theorem 1.9 (applied with K = N) we can
assume that M is embedded in Rq. We can then define

ν̃M ,Rq = {(x , v) ∈ M ×Rq|v ∈ Tx M⊥}

and

ν̃N ,M = {(x , v) ∈ N ×Rq|v ∈ (Tx M)∩ (Tx N)⊥}.

Note that there is a bijection αM ,Rq : ν̃M ,Rq → νM ,Rq , taking (x , v) to the equivalence class of v in

TxR
q/Tx M . Similarly there is a bijection αN ,M : ν̃N ,M → νN ,M sending (x , v) to its equivalence

class in Tx M/Tx N . These bijections commute with the projections to M (in the case of αM ,Rq )
or N (in the case of αN ,M ). It should at least appear that ν̃M ,Rq is a vector bundle over M , and
likewise that ν̃N ,M is a vector bundle over N , and that these are isomorphic to the respective
normal bundles. This is indeed true, but so far we have not even shown that ν̃M ,Rq and ν̃N ,M

are smooth manifolds. We now remedy this:

Lemma 2.12. Let M ⊂ Rq be a submanifold, and N ⊂ M a submanifold. Then ν̃M ,Rq and ν̃N ,M

are smooth manifolds, and the bijections αM ,Rq : ν̃M ,Rq → νM ,Rq and αN ,M : ν̃N ,M → νN ,M are

diffeomorphisms.
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Proof. Actually the statements about ν̃M ,Rq are, after renaming, just special cases of those about
ν̃N ,M , but for clarity’s sake we prove the results about ν̃M ,Rq first. To show that ν̃M ,Rq is a smooth
manifold it suffices to show that for any point m0 ∈ M there is a neighborhood U ⊂ M of m0 so
that ν̃M ,Rq ∩ (U ×Rq) is a submanifold of U ×Rq.

To do this, note that on a sufficiently small neighborhood U ⊂ M we there will be smooth
functions ai j : U → R (1≤ i ≤ m, q ≤ j ≤ q) so that, for all X ∈ U ,

Tx M = span

(
q∑

j=1

ai j(m)
∂

∂ x j

: 1≤ i ≤ m

)

(for instance, one could take an adapted coordinate chart as in Theorem 1.4 and use for
∑

ai j
∂

∂ x j

the vector fields that are mapped by the coordinate chart to the standard coordinate vector fields
on Rm × {0}) So at each x ∈ U the matrix A(x) = {ai j(x)} has full rank m. Define

F : U ×Rq→ Rm

(x , v1, . . . , vq) 7→

 
k∑

j=1

a1 j(x)v j , . . . ,

k∑

j=1

amj(x)v j

!
.

Identifying T(x ,v)(M×R
q)with Tx M⊕Rq, we see that the linearization F∗ : T(x ,v)(M×R

q)→ Rm

has F∗(0, w) = A(x)w. In particular since A(x) has full rank, F∗ is surjective. By Theorem 1.8
this proves that ν̃M ,Rq ∩(U×Rq) is a submanifold of U×Rq for each member U of an open cover
of a neighborhood of M in Rq, and hence that ν̃M ,Rq is a smooth manifold.

Moreover, inspection of the coordinate charts constructed in the proof of Theorem 1.8 shows
that the smooth structure on ν̃M ,Rq is consistent with that of νM ,Rq under the obvious bijection
between them. Indeed, in the intersection of ν̃M ,Rq with U ×Rq where U is a sufficiently small
open set as in the previous paragraph, we can define a coordinate system whose first m coor-
dinates (parametrizing M) are the same as those of an adapted coordinate chart for M ⊂ Rq,
and whose last q −m coordinates depend only on the Rq factor. It’s not hard to see that such
a coordinate chart is diffeomorphic via αM ,Rq to a corresponding local trivialization for νM ,Rq

as described in Example 2.4. So since the bijection αM ,Rq restricts to each member of an open
cover as a diffeomorphism it is a diffeomorphism.

Now we turn to the slightly more complicated case of ν̃N ,M . In this case, for any n0 ∈ N we
can find a neighborhood of n0 in Rq and smooth functions ai j (1 ≤ n+ q − m, 1 ≤ j ≤ q) on

U so that, for each x ∈ U , Tx N is spanned by the
∑q

j=1
ai j(x)

∂

∂ x j

for 1 ≤ i ≤ n, and Tx M⊥ is

spanned by the
∑q

j=1
ai j(x)

∂

∂ x j

for n+1≤ i ≤ n+q−m. Namely, as before we can use an adapted

coordinate chart for the vector fields spanning T N |U , while for the vector fields spanning T M⊥|U
we can start with a similar such basis of vector fields spanning Tx M at every x ∈ U , extend this
to a basis for Rq (say using vector fields with constant coefficients, and perhaps shrinking U in
the process), and then modify this basis using the Gram-Schmidt procedure to get a basis for
all of TxR

q at every point of U consisting of smooth vector fields, the last q −m of which span

Tx M⊥ at every x ∈ U .

Now since Tx N ∩ Tx M⊥ = {0} for all x ∈ M (as T N ⊂ T M), our entire set of vector fieldsn∑q

j=1
ai j(x)

∂

∂ x j

: 1≤ i ≤ n+ q−m

o
is linearly independent at each x ∈ U . So just as before



10 MATH 8210 LECTURE NOTES, PART 2

we can define

G : U ×Rq→ Rn+m−q

(x , v1, . . . , vq) 7→

 
k∑

j=1

a1 j(x)v j , . . . ,

k∑

j=1

amj(x)v j

!

The preimage of 0 under this map consists of those pairs (x , v) where v is perpendicular both

to the subspace Tx N and to the subspace Tx M⊥, i.e. where v ∈ Tx M ∩ Tx N⊥, so G−1({0}) =
{(x , v) ∈ ν̃N ,M |x ∈ U}. As in the case of ν̃M ,Rq , the linear independence of the vector fields

that we have chosen implies that G∗ is surjective, so G−1({0}) is a submanifold, and indeed

following the proof of Theorem 1.8 we can take a coordinate system on G−1({0}) so that the
first n coordinates depend only on the N factor and the last m−n depend only on the Rq factor,
so that in this coordinate system the projection ν̃N ,M → N appears as the projection onto the
first n coordinates. Allowing U to vary through sufficiently small open neighborhoods in Rq of
points of N produces an atlas for ν̃N ,M each member of which can be seen as a local trivialization
for the bundle ν̃N ,M → N . Once again, these trivializations are compatible under the bijection
αN ,M with the standard normal bundle trivializations as given in Example 2.4, completing the
proof. �

The following (when combined with Proposition 2.8) proves the tubular neighborhood the-
orem for submanifolds of Rq, and will also be used in the more general case. To prepare for the
statement, note that the space

ν̃M ,Rq = {(x , v)|x ∈ M , v ∈ Tx M⊥}

of the previous lemma contains a distinguished “zero section” consisting of points of form (x , 0).

Lemma 2.13. If M ⊂ Rq is a submanifold, define

εM ,Rq : ν̃M ,Rq → Rq

by

εM ,Rq(x , v) = x + v.

Then there is a neighborhood V of the zero section of ν̃M ,Rq such that εM ,Rq restricts to V as a

diffeomorphism to its image, which is an open neighborhood of M in Rq.

Proof. Writing 0M = {(m, 0)} for the zero section of ν̃M ,Rq , for any (x , 0) ∈ 0M the tangent space

T(x ,0)ν̃M ,Rq splits naturally as Tx M ⊕ (Tx M)⊥, where the first factor is tangent to 0M and the

second is tangent to the fibers of the bundle projection ν̃M ,Rq . Of course, since Tx M is identified

via the embedding as a subspace of Rq, Tx M ⊕ (Tx M)⊥ in turn may be identified with all of
R

q. As should be clear from the definition of εM ,Rq , with respect to these identifications the

linearization of εM ,Rq at (x , 0) is just the identity from Rq to itself and in particular is invertible.
So by the inverse function theorem every point 0M has a neighborhood to which εM ,Rq restricts
as a diffeomorphism to its image.

If x ∈ M and δ > 0, define

Vx ,δ = {(y, v) ∈ ν̃M ,Rq ||y − x |+ |v|< δ},

where | · | refers to the standard distance in Euclidean space Rq. By the previous paragraph,
for any x ∈ M there is δ > 0 so that εM ,Rq |Vx ,δ

is a diffeomorphism to its image. So define a

function δ : M → R by setting δ(x) equal to the supremum of all numbers δ such that εM ,Rq |Vx ,δ

is a diffeomorphism to its image. So evidently δ(x)> 0 for all x .
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I now claim that δ : M → R is continuous. Indeed, one has a relationship

δ(y)≥ δ(x)− |x − y |,

resulting from the fact that Vy,δ−|x−y| ⊂ Vx ,δ for all δ > 0. Combining this relationship with the
same one where x and y are reversed shows that

|δ(x)−δ(y)| ≤ |x − y |,

so δ is indeed continuous. Now define

V =

�
(x , v) ∈ ν̃M ,Rq

����|v|<
1

3
δ(x)

�

V is then an open subset (since (x , v) 7→ |v| − 1

3
δ(x) is continuous and V is the preimage of an

open set under this map), and we will show that it has the property stated in the lemma.
The main issue is to show that εM ,Rq |V is injective. So we must show that if (x , v), (y, w) ∈

ν̃M ,Rq with |v| <
δ(x)

3
, |w| <

δ(y)

3
, and x + v = y + w, then (x , v) = (y, w) Without loss of

generality assume that δ(x) ≤ δ(y). Now the assumed relation x + v = y + w is equivalent to
x − y = w − v. But |w − v| ≤ |w|+ |v|< 2δ(x)/3, and so

|x − y |+ |w|= |w − v|+ |w|< δ(x).

So for some δ < δ(x) we have (x , v), (y, w) ∈ Vx ,δ. But by the definition of δ(x), εM ,Rq restricts

injectively to Vx ,δ for all δ < δ(x). So indeed (x , v) = (y, w).
So we have shown that εM ,Rq restricts injectively to V . By the construction of V and by

what was done at the start of the proof, V is covered by open sets on which εM ,Rn is a local

diffeomorphism, and so εM ,Rn |V is also continuous and open. Thus εM ,Rq |V is a diffeomorphism
to its image, which is open in Rq. �

Corollary 2.14. Let M ⊂ Rq be a submanifold. Then there is an open neighborhood W of M and

a smooth map r : W → M so that r|M is the identity.

(Indeed, r can be taken to be a deformation retraction, as you can check.)

Proof. Let V be a neighborhood of 0M ⊂ ν̃M ,Rq as in Lemma 2.13, so that εM ,Rq : V → Rq is a
diffeomorphism to its image. Denote this image by W ⊂ M . Then where π: ν̃M ,Rq → M is the

bundle projection and where we identify M with 0M , define r : W → M by r = π ◦ (εM ,Rq |V )
−1.

Since εM ,Rq restricts to 0M
∼= M as the identity, r is easily seen to satisfy the desired property. �

End of the proof of Theorem 2.11. We let N ⊂ M be any compact submanifold, and by replacing
M by a sufficiently small open set containing N and applying Theorem 1.9 we assume M to be
embedded as a submanifold of Rq. Where again

ν̃N ,M = {(x , v) ∈ N ×Rq|v ∈ Tx M ∩ (Tx N)⊥}

define f0 : ν̃N ,M → R
q by f (x , v) = x + v. Where r and W is as in Corollary 2.14, let U0 =

f −1(W ), and define

f : U0→ M by f = r ◦ f0.

We have the zero section 0N = {(x , 0)} ⊂ ν̃N ,M ; clearly for (x , 0) ∈ 0N , f0(x , 0) = x ∈ N ⊂ M

and so f (x , 0) = x also. Moreover, for (x , 0) ∈ 0N , T(x ,0)U0 splits (compatibly with the splitting

of N ×Rq) as a direct sum Tx N ⊕(Tx M ∩(Tx N)⊥) (which is the same as Tx M), and with respect
to this splitting the linearization ( f0)∗ : T(x ,0)U0 → TxR

q ∼= Rq acts as the inclusion. Now since

the map r acts as the identity on M , and since ( f0)∗ sends T(x ,0)U0 isomorphically to Tx M ≤ Rq,

it follows by the chain rule that f∗ = r∗ ◦ ( f0)∗ also sends T(x ,0)U0 isomorphically to Tx M for
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all (x , 0) ∈ 0N . Thus around any point (x , 0) ∈ 0N ⊂ U0 there is a neighborhood Vx to which
f : U0→ M restricts as a diffeomorphism to its image, which is open in M .

So much like the proof of Lemma 2.13 we should now show that, perhaps after shrinking the
neighborhood U0 of 0N to some smaller neighborhood U1, f restricts injectively to U1. For this
we exploit the compactness of N . If there were no neighborhood of 0N to which f restricted
injectively, we could find (x i , vi), (yi , wi) ∈ U0 such that (x i , vi) 6= (yi , wi) and vi , wi → 0 but
f (x i , vi) = f (yi , wi) for all i. After passing to subsequences, the sequences x i , yi would converge
in N by compactness, say to x and y , and we would have f (x , 0) = f (y, 0) and hence x = y .
But then (x i , vi) and (yi , wi)would eventually both lie in the neighborhood Vx from the previous
paragraph, contradicting the fact that f is injective on that neighborhood. This contradiction
shows that there is some neighborhood U1 of 0N , which we may as well take to be contained in
∪x∈N Vx , such that f |U1

is injective.

Since f : U1 → M is injective and U1 is covered by sets to which f restricts as a diffeomor-
phism to its image, it follows that f : U1→ f (U1) is a global diffeomorphism to its image (since

smoothness of f and of f −1 can be checked on these open sets).
This shows that a neighborhood U1 of 0N in ν̃N ,M is diffeomorphic to a neighborhood of N

in M by a diffeomorphism restricting to the identity on M . By Remark 2.10 and the fact that
ν̃N ,M is diffeomorphic to νN ,M by a diffeomorphism acting as the identity on the zero section,
this suffices to yield a tubular neighborhood Φ : νN ,M → M . �

3. VECTOR FIELDS AND FLOWS

The following is a basic result from the theory of ordinary differential equations:

Theorem 3.1. Let F : Rn→ Rn be a compactly supported smooth function. Then for any x0 ∈ R
n

there is a unique solution γx0
: R→Rn to the initial value problem

γ′(t) = F(γ(t))

γ(0) = x0

Moreover if I ⊂ R is any open interval, if t0 ∈ R, and if γ: I → R obeys γ′(t) = F(γ(t)) and

γ(t0) = γx0
(t0), then γ= γx0

|I . Furthermore, the map

Φ : R×Rn→ Rn

(t, x) 7→ γx(t)

is a smooth map.

Sketch of proof. (See [Lee, Chapter 17] for details.) First of all, suppose that we can show that
there is ε > 0 such that for every x0 ∈ R

n and every t0 ∈ R there is a solution γx0
: (t0 −

ε, t0+ ε)→ R
n to γ′(t) = F(γ(t)) with γ′(t0) = x0, and such that any other solution γ on some

subinterval of (t0 − ε, t0 + ε) such that γ(t1) = γx0
(t1) for some t1 coincides is equal to γx0

everywhere. From this the existence of the all-time solution γx0
: R→ Rn would follow. Indeed,

we could initially apply the result to get a solution γ0 on (−ε,ε) with γ0(0) = x0. But we could
then also get a solution γ1 on (−ep/2, 3ε/2)with γ1(ε/2) = γ0(ε/2). The uniqueness statement
would then force γ1 and γ0 to be equal everywhere that they are both defined; hence they would
combine to give a solution (still denoted γ0) on (−ε, 3ε/2). But there would also be a solution
γ2 on (0, 2ε) with γ2(ε) = γ0(ε), and by uniqueness this then coincides with γ0 everywhere,
allowing the domain of γ0 to be extended to (−ε, 2ε). This can be repeated indefinitely, and the
union of all of the solutions so obtained gives a map γx0

→ R→ Rn.

In other words, existence and uniqueness for all time (i.e., all of the theorem except the last
sentence) will follow if we can prove existence and uniqueness on all time intervals I of length at
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most 2ε for some fixed ε. We will do this by converting the differential equation to a fixed point
problem and applying the contractive mapping principle. Namely, observe that the fundamental
theorem of calculus implies that the following two statements about a map γ: I → Rn, where I

is an interval containing a point t0 are equivalent:

γ is a differentiable map such that γ′(t) = X (γ(t)) and γ(t0) = x0

and

γ is a continuous map such that γ(t) = x0 +

∫ t

t0

F(γ(s))ds for all t ∈ I

Let C(I ,Rn) denote the space of continuous functions from I to Rn, endowed with the uniform
(“sup”) norm. A standard fact in analysis is that C(I ,Rn) is a Banach space (basically this is
because a uniform limit of continuous functions is continuous). Define

A : C(I ,Rn)→ C(I ,Rn)

by
�
A γ

�
(t) = x0 +

∫ t

t0

F(γ(s))ds

Now F was assumed compactly supported and smooth—in particular F is Lipschitz (actually
F being Lipschitz is all that is needed for the conclusion of the theorem), i.e., there is C such
that |F(x) − F(y)| ≤ C |x − y | for all x , y ∈ Rn (C can be taken to be the maximum norm of

the gradient of F). An easy computation shows that, provided the length of I is less than 1

C
, the

above map A is contractive, i.e., there is r < 1 such that ‖A γ −Aη‖ ≤ r‖γ − η‖. But the
contractive mapping mapping principle asserts that a contractive map from a Banach space to
itself always has a unique fixed point (if γ0 is chosen arbitrarily and we define γi =A γi−1, the
fixed point is lim∞

i=1
A γi). This precisely gives the desired existence and uniqueness of solutions

on sufficiently short time intervals, and hence by the first paragraph proves all of the theorem
except the last sentence.

The smoothness of Φ relies on some somewhat subtle estimates which can be found in [Lee];
I’ll just prove the fact that Φ is continuous, which is a first step in the smoothness proof. First
of all observe that for any smooth u: R→ Rn such that u(t) is nonzero for all t, one has, using
the Cauchy–Schwarz inequality and the chain and product rules,

(1)
d

d t
|u(t)|=

d

d t

p
u(t) · u(t) =

2u(t) · u′(t)

2
p

u(t) · u(t)
≤
|u(t)||u′(t)|

|u(t)|
=

����
du

d t

���� .

Now if x , y ∈ Rn are distinct points, by uniqueness of solutions we have γx(t) 6= γy(t) for all t,

so we can apply (1) with u(t) = γx(t)− γy(t) to get

d

d t
|γx(t)− γy(t)| ≤

����
d

d t

�
γx(t)− γy(t)

�����=
��F(γx(t))− F(γy(t))

��

≤ C |γx(t)− γy(t)|

where as before C is the Lipschitz constant of F . Dividing by |γx(t) − γy(t)| (which as noted

earlier is nowhere zero) and recalling the identity d

d t
(ln f ) =

f ′

f
then gives

d

d t
ln |γx(t)− γy(t)| ≤ C .

The Fundamental Theorem of Calculus (and then exponentiation of both sides) then shows that

|γx(t)− γy(t)| ≤ eC t |γx(0)− γy(0)|,
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i.e.

|γx(t)− γy(t)| ≤ eC t |x − y |.

This shows that Φ is continuous as a function of x for fixed t. To take into account the varying
of t we can just note that, if D > 0 is such that |F(x)| ≤ D for all x (such D exists since we
assumed F was compactly supported), then |γx(s)− γx(t)| ≤ D|s− t|. So we get

|Φ(s, x)−Φ(t, y)| ≤ |Φ(s, x)−Φ(t, x)|+ |Φ(t, x)−Φ(t, y)| ≤ D|s− t|+ eC t |x − y |,

and this proves that Φ is continuous at the (arbitrary) point (t, y).
As mentioned earlier, smoothness as opposed to continuity takes more work; I’ll just mention

that part of the idea is to differentiate the equation

∂

∂ t
(Φ(t, x)) = F(Φ(t, x))

which is satisfied by Φ with respect to t and/or x , in order to get a differential equation satisfied
by a partial derivative of Φ; one can work inductively on the order of the derivative.

�

In other words, for compactly supported vector fields F on Rn, there is always a unique
integral curve of a vector field passing through any given point, and this curve varies smoothly

with the point. This can easily be exported to smooth manifolds to yield the following corollary:1

Corollary 3.2. Let M be a smooth manifold and let X be a compactly supported vector field on M.

Then there is a unique family of diffeomorphisms, parametrized by t ∈ R,

φ t
X

: M → M

such that for all m ∈ M we have

φ0
X
(m) = m and

d

d t
φ t

X
(m) = X (φ t

X
(m)).

These diffeomorphisms obey

(2) φ t
X
◦φs

X
= φ t+s

X

and the map (t, m) 7→ φ t
X
(m) is smooth.

The equation 2 should be easy to see: both sides represent the effect of starting at a point
and flowing along the flow of the vector field for a time t+s. This equation is part of what leads
to the conclusion that the φ t

X
are diffeomorphisms rather than just being smooth maps, since

evidently φ−t
X

is an inverse to φ t
X
. The family {φ t

X
} is called the flow of the vector field X .

Remark 3.3. It is sometimes useful to allow the vector field X to itself depend on t, i.e. one
can have a family of vector fields X t varying with the parameter t. As long as this dependence
is smooth and X t has a uniform Lipschitz constant for all t then the proofs of Theorem 3.1
and Corollary 3.2 go through essentially without change in order to show that one still gets

diffeomorphisms φ t
X

so that φ0
X
= idM and d

d t
φ t

X
(m) = X t(φ

t
X
(m)). In fact, any smooth path

of diffeomorphisms starting at the identity can be described as such a “time-dependent” flow—

given such a path φt one can define X t(m) =
dφt

d t
(φ−1

t
(m)) and, more or less tautologically, the

flow of X t will recover φt . Of course, for one of these time-dependent flows the homomorphism
property (2) typically will not hold.

1One can approach the derivation of the corollary from Theorem 3.1 in either of a couple of different ways, either

by directly working in local coordinate charts or by embedding M in Rq for some large q and using the tubular neigh-

borhood theorem to construct a vector field on Rq which restricts to M as the given vector field X ; details are left to

you
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Remark 3.4. If one drops the hypothesis that X is compactly supported (or, more generally,
Lipschitz in a suitable sense) then Corollary 3.1 will no longer be true as stated. However a
“local” statement can be made: for any m ∈ M there will still be ε > 0 and a neighborhood U

of m in M on which there exists a unique “partial flow”

(−ε,ε)× U → M

(t, y) 7→ φ t
X
(y)

so that d

d t
φ t

X
(y) = X (φ t

X
(y)) and φ0

X
(y) = y . In other words, while a long-time existence

result along the lines of Theorem 3.1 will typically fail, one still has uniqueness and short-time
existence, for a time ε which depends on the point of interest in M .

The classic example of failure of long-time existence comes in the case M = R, where the

vector field X is given by X (x) = x2. Thus the relevant differential equation is

d x

d t
= x2.

This equation can be solved by separation of variables to yield, where x0 = x(0),

x(t) =
x0

1− x0 t
.

So for any x0 we have a unique integral curve x(t) through x0, but this solution “blows up in

finite time”—it ceases to be well-defined at time t = 1

x0

(but is a perfectly good solution until

then).

3.1. The Lie Derivative. Given a (say compactly supported for convenience, but this is not
really necessary for this section) vector field X on a smooth manifold M , the flow of X as
described above provides a path of diffeomorphisms φ t

X
: M → M . The Lie derivative of a vector

field or of a differential form along X is meant to be a measurement of how that vector field or
differential form changes as one moves along the flow of X .

We’ll start with the definition for vector fields:

Definition 3.5. Let X and Y be vector fields on M The Lie derivative of Y along X is the vector
field LX Y whose value at a point m ∈ M is the element of TmM defined by

(LX Y )m = lim
t→0

(φ−t
X
)∗(Yφ t

X (m)
)− Ym

t

Note that this definition makes sense: recall that φ−t
X

is inverse to φ t
X
, and therefore we have

a map (φ−t
X
)∗ : Tφ t

X (m)
M → TmM . Thus the two tangent vectors in the numerator belong to the

same vector space, namely TmM .
There is a similar definition for differential forms, but actually it can be rewritten in a some-

what simpler way because one moves from T ∗
φ t

X (m)
M to T ∗M by pullback by the map φ t

X
. So

if ω ∈ Ωp(M) and we wish to compare ωφ t
X (m)

to ωm we can hit the first of these with the

transpose of the linearization of φ t
X
. But recall that pullback of differential forms was defined

precisely to so that the differential form ((φ t
X
)∗ω)m would be equal to the result of applying the

transpose of the linearization of φ t
X

to ωφ t
X (m)

. So we define:

Definition 3.6. Let ω ∈ Ωp(M) be a differential form and let X be a vector field on M . The Lie
derivative of ω along X is the differential p-form defined by

LXω = lim
t→0

(φ t
X
)∗ω−ω

t
=

d

d t

����
t=0

(φ t
X
)∗ω
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Remark 3.7. It can be shown (either directly from the definition or from the formulas that we
are about to prove) that our definitions of the Lie derivative of a vector field and of a differential
form are compatible in the following sense. Suppose that X , Y1, . . . , Yp are vector fields andω is

a p-form. Thenω(Y1, . . . , Yp) is a smooth function, i.e. a 0-form, so we can take its Lie derivative

along X . On the other hand we can take the Lie derivatives along X of ω and of the Yi . These
obey the Leibniz rule:

LX

�
ω(Y1, . . . , Yp)

�
= (LXω)(Y1, . . . , Yp) +

p∑

j=1

ω
�
Y1, . . . , Yj−1,LX Yj , Yj+1, . . . , Yp

�
.

The definition of the Lie derivative along X makes it look somewhat impossible to compute;
however we will presently give formulas which allow it to be quite easily computed from local
coordinate expressions of X and of the object being differentiated. We start with 0-forms, and
remind the reader that a vector field can be viewed as a derivation on the space of C∞ functions;
in particular if X is a vector field and f ∈ C∞(M) we have a well-defined function X f .

Proposition 3.8. If f ∈ Ω0(M) = C∞(M) then LX f = X f .

Proof. For any point m ∈ M we have, using the chain rule

(LX f )(m) =
d

d t

����
t=0

(φ t∗
X

f )(m) =
d

d t

����
t=0

( f ◦φ t
X
)(m)

=
d

d t

����
t=0

f
�
φ t

X
(m)

�
= d f

�
d

d t

����
t=0

φ t
X
(m)

�
= d f (Xm) = (X f )m

�

Recall that, since vector fields are derivations on C∞(M), they have well-defined commuta-
tors ([X , Y ] = X ◦ Y − Y ◦ X ), which are also vector fields. Interestingly, commutators fit into
the story of Lie derivatives:

Theorem 3.9. If X and Y are vector fields on M then LX Y = [X , Y ]

Proof. Let f ∈ C∞(M) and m ∈ M ; we are to show that
�
(LX Y )( f )

�
(m) =

�
X (Y f )

�
(m) −�

Y (X f )
�
(m).

We see (recalling that an element of, e.g. TmM is a derivation from the algebra of germs of
C∞ functions around m to R, so if v ∈ TmM and f ∈ C∞(M) we have a number v( f )):

�
(LX Y )( f )

�
(m) = lim

t→0

((φ−t
X
)∗Yφ t

X (m)
) f − Ym f

t
= lim

t→0

Yφ t
X (m)
( f ◦φ−t

X
)− Ym f

t

=
d

d t

����
t=0

Yφ t
X (m)
( f ◦φ−t

X
)

where in the first inequality we have used the definition of the pushforward in terms of deriva-
tions: (φ∗v)( f ) = v( f ◦φ). Now define a function of two variable H by

H(s, t) = ( f ◦φ−t
X
)(φs

Y
(φ t

X
(m))).

We observe
∂ H

∂ s
(0, t) = d( f ◦φ−t

X
)(Yφ t

X (m)
) = Yφ t

X (m)
( f ◦φ−t

X
).

Combining this we the previous displayed equation we see that

�
(LX Y )( f )

�
(m) =

∂ 2H

∂ t∂ s
(0, 0).
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Now (setting u= −t and using the chain rule)2

∂ 2H

∂ t∂ s
(0, 0) =

∂ 2H

∂ s∂ t

�����
(0,0)

f (φs
Y
(φ t

X
(m)))−

∂ 2H

∂ s∂ u

�����
(0,0)

f (φu
X
(φs

Y
(m)))

=
∂

∂ t

����
t=0

�
∂

∂ s

����
s=0

f ◦φs
Y

�
(φ t

X
(m))−

∂

∂ s

����
s=0

�
∂

∂ u

����
u=0

f ◦φu
X

�
(φs

Y
(m))

=LX (Y f )m −LY (X f )m =
�
(X Y − Y X ) f

�
(m),

where in the last inequality we use Proposition 3.8. Since f and m are arbitrary this proves that
LX Y = X Y − Y X . �

We now turn to the Lie derivative on differential forms; just as with vector fields there turns
out to be a rather simple formula, which is quite useful for geometric applications. First we
observe:

Lemma 3.10. The Lie derivative LX (defined by LXω =
d

d t

���
t=0
φ t∗

X
ω) is the unique linear map

L : Ω∗(M)→ Ω∗(M) obeying the following properties:

(1) For all f ∈ Ω0(M) = C∞(M), L f = X f .

(2) dLω =L (dω) for all ω ∈ Ω∗(M).
(3) For all ω,θ ∈ Ω∗(M), L (ω∧ θ ) = (Lω)∧ θ +ω∧ (L θ ), and

(4) If U is an open set and ω,ω′ ∈ Ω∗(M) are such that ω|U = ω
′|U , then (Lω)|U =

(Lω′)|U .

Proof. First we should check that LX obeys properties (1)-(4).
Property (1) is Proposition 3.8.
For property (2), simply note that, since d commutes with pullback,

d
�
φ t∗

X
ω−ω

�
= φ t∗

X
dω− dω,

and then (2) follows by dividing by t and taking the limit as t → 0
For property (3) we have

d

d t

����
t=0

φ t∗
X
(ω∧ θ ) =

d

d t

����
t=0

(φ t∗
X
ω)∧ (φ t∗

X
θ )

=
d

d t

����
t=0

(φ t∗
X
ω)∧ θ +ω∧ (φ t∗

X
θ ) = (LXω)∧ θ +ω∧ (LXθ ).

Property (4) is easily verified: for any point m ∈ U we will have φ t
X
(m) ∈ U for sufficiently

small t, and so (φ t∗
X
ω)m = (φ

t∗
X
ω′)m for all sufficiently small t, from which the conclusion

immediately follows.
It remains to show that properties (1)-(4) uniquely specify a linear map. If L is any map

obeying (1)-(3), and if f , g1, . . . , gp ∈ C∞(M), then we will have L f = LX f and L gi = LX gi

by (1), and then L (d gi) =LX (d gi) by (2), and then

L
�

f d g1 ∧ · · · ∧ d gp

�
=LX

�
f d g1 ∧ · · · ∧ d gp

�

by (3). So by linearityL andLX coincide on any forms which are finite linear combinations of
forms of the shape f d g1∧· · ·∧d gp. Now we proved earlier (Proposition 4.19 of Part 1) that any

differential form ω can be written as a locally finite sum of forms of the shape f d g1∧· · ·∧ d gp,

2Here and below I will make use of the following point (and similar ones) without comment: if f (x , y) is some

function and if we set g(z) = f (−z, z), then the chain rule gives that g ′(0) = (∇ f ) · 〈−1, 1〉=
∂ f

∂ y
(0, 0)−

∂ f

∂ x
(0, 0)
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i.e., M is covered by open sets on each of whichω is a finite linear combinations of forms of the
shape f d g1 ∧ · · · ∧ d gp. Now if L (like LX ) obeys condition (4) then the restriction of Lω to

any open set is determined by the restriction of ω to that set, so by considering the restriction
of ω to the open sets in the cover in the previous paragraph we see that Lω =LXω. �

Accordingly if we find a simple formula for an operation obeying (1)-(4) above then we can
deduce that LX is given by that formula. To prepare for this, recall the operation of “interior
multiplication” of a form by a vector field: For any vector field X we get a map ιX : Ωp(M)→
Ω

p−1(M) defined by

(ιXω)(v1, . . . , vp−1) =ω(X , v1, . . . , vp−1).

Here is the promised formula:

Theorem 3.11 (Cartan’s Magic Formula). For any ω ∈ Ωp(M) we have

LXω = dιXω+ ιX dω.

Proof. We just have to show that L ′
X

:= dιX + ιX d obeys condition (1)-(4) above.

If f ∈ Ω0(M) we see that

L ′
X

f = 0+ ιX d f = d f (X ) = X f ,

confirming (1).

(2) holds, since both dL ′
X

and L ′
X

d are equal to dιX d (as d2 = 0).

(4) is immediate from the definition of L ′
X
.

So the only nontrivial part is (3). And this isn’t too hard: the key point is (as I will leave you
to verify, using formula (7) on p. 23 of part 1) the identity

ιX (ω∧ θ ) = (ιXω)∧ θ + (−1)pω∧ (ιXθ ) if ω ∈ Ωp(M).

Of course this is the same “anti-derivation” property as is satisfied by d. Combining these we
get, if ω ∈ Ωp(M),
�
dιX + ιX d

�
(ω∧ θ ) = d

�
(ιXω)∧ θ + (−1)pω∧ (ιXθ )

�
+ ιX ((dω)∧ θ + (−1)pω∧ (dθ ))

= (dιXω)∧ θ + (−1)p−1ιXω∧ dθ + (−1)pdω∧ (ιXθ ) + (−1)2pω∧ dιXθ

+ (ιX dω)∧ θ + (−1)p+1dω∧ ιXθ + (−1)pιXω∧ dθ + (−1)2pω∧ ιX dθ ,

and after cancellation one ends up with precisely
�
dιXω+ ιX dω

�
∧ θ +ω∧

�
dιXθ + ιX dθ

�
, as

desired. �

We have, by definition,

LXω =
d

d t

����
t=0

φ t∗
X
ω;

to find the derivative at a time other than zero, we compute, using (2),

(3)
d

d t

����
t=s

φ t∗
X
ω = lim

h→0

φ
(s+h)∗
X ω−φ∗

s
ω

h
= lim

h→0

φs∗
X
(φh∗

X
ω−ω)

h
= φs∗

X
LXω

Corollary 3.12. Suppose thatω ∈ Ω∗(M) is closed: dω= 0. Then a vector field X has the property

that φ t∗
X
ω =ω for all t if and only if d(ιXω) = 0.
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Proof. We have φ t∗
X
ω = ω for all t if and only if d

d t

���
t=s
φ t∗

X
ω = 0 for all s, which by (3) is

equivalent to φs∗
X
LXω = 0 for all s, which of course is equivalent to LXω = 0. Cartan’s Magic

Formula reveals that this in turn is equivalent to

dιXω+ ιX dω= 0,

and of course the second term on the left is zero since we assume ω is closed. �

3.2. Volume forms and the Moser argument. From now on let M be a compact oriented n-
manifold (without boundary). A volume form on M is by definition a differential form ω ∈
Ω

n(M) which is nowhere zero. In particular since volume forms have top degree they are obvi-
ously automatically closed. Ifω is a volume form, then for any open subset U ⊂ M , by restricting
ω to U and then integrating we can define the volume of U:

volω(U) =

∫

U

ω

(this is a finite number by virtue of the ambient manifold M being compact). A diffeomorphism
φ is called volume-preserving (with respect to the volume formω) if φ∗ω =ω; this terminology
is justified by recalling the behavior of integrals under pullbacks by diffeomorphisms: we have

volω(φ(U)) =

∫

φ(U)

ω =

∫

U

φ∗ω =

∫

U

ω = volω(U)

if φ is volume-preserving.
Corollary 3.12 shows how to construct many volume-preserving diffeomorphisms. Namely,

the time-t flow of a vector field X will be volume-preserving provided that d(ιXω) = 0. To get
a feel for this condition, note that we can write ω in local coordinates (x1, . . . , xn) as

ω = gd x1 ∧ · · · ∧ d xn

for some smooth nowhere-zero function g. Then if a vector field X is given locally by X =∑
i fi

∂

∂ x i

, we will have

ιXω =
∑

i

g fiι ∂

∂ xi

d x1 ∧ · · · ∧ d xn =
∑

i

(−1)i−1 g fid x1 ∧ · · · ∧dd x i ∧ · · · ∧ d xn

and so

d(ιXω) =

�∑

i

∂

∂ x i

(g fi)

�
d x1 ∧ · · · ∧ d xn.

Thus the condition for the flow of X to preserve ω is just that

n∑

i=1

∂

∂ x i

(g fi) = 0.

In case the function g is 1 (i.e., ω restricts to the coordinate chart as the standard volume form
d x1 · · · ∧ · · · d xn; it is actually always possible to find coordinates around any given point such
that this holds—see Remark 3.14), this condition just reads that the divergence (in the standard

multivariable calculus sense) of X =
∑

fi
∂

∂ x i

should be zero. Thus the flow of a divergence-free

vector field preserves volume.
It should be clear from the local coordinate formulas above that, given a volume form ω

and any α ∈ Ωn−1(M), a unique vector field X can be chosen so that ιXω = α (this can be
done locally in coordinate charts, and then the local solutions can be pieced together with a
partition of unity). Of course, there are many closed (n− 1)-forms (for instance, the derivative
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of any (n − 2)-form will do), and so there are many vector fields X with dιXω = 0. As such,
from Cartan’s Magic Formula we have seen that for any volume form on a compact oriented
manifold there are many diffeomorphisms which preserve the volume form.

Now let us call two volume forms ω0 and ω1 on M equivalent if there is a diffeomorphism
f : M → M so that f ∗ω1 = ω0. In view of the behavior of the integral under pullbacks, if ω1

is equivalent to ω0 it is obviously necessary to have
∫

M
ω1 =

∫
M
ω0. An argument of Moser

shows that this condition is also sufficient:

Theorem 3.13 ([Mos]). Let M be a compact connected oriented manifold without boundary and

ω0,ω1 ∈ Ω
n(M) two volume forms such that

∫
M
ω0 =

∫
M
ω1. Then there is a diffeomorphism

f : M → M so that f ∗ω1 =ω0.

Sketch of proof. First of all note that since the only closed 0-forms on a connected manifold
are the constants, the assumption says that the ωi have the same integral when wedged with
any closed 0-form. By Poincaré duality, this then implies that ω0 and ω1 represent the same

cohomology class in Hn(M). So there is some α ∈ Ωn−1(M) such that ω1 = ω0 + dα. Now for
0≤ t ≤ 1 let

ωt =ω0 + tdα= (1− t)ω0 + tω1.

The fact that ω0 and ω1 have equal integrals (or even just integrals of the same sign) means
that they induce the same orientation on M . So if m ∈ M and {e1, . . . , en} is a basis for TmM such
that ω0(e1, . . . , en)> 0, then it will also hold that ω1(e1, . . . , en)> 0. But then for all t ∈ [0, 1]

ωt(e1, . . . , en) = ((1− t)ω0 + tω1)(e1, . . . , en)> 0.

Since m ∈ M was an arbitrary point this shows that the ωt =ω0 + tdα are all volume forms.
The plan now is to find a time-dependent vector field X t on M so that where {φt} is the flow

of X t (i.e. φ0 = idM and d

d t
φt(m) = X t(φt(m))) we have φ∗

t
ωt =ω0 for all t. If we can do this

then f = φ1 would be our desired diffeomorphism.
In this direction, Cartan’s Magic Formula together with the chain rule can be seen to imply

that, if X t has flow φt :

d

d t
(φ∗

t
ωt) = φ

∗
t

dωt

d t
+φ∗

t
LX t
ωt

= φ∗
t

�
dα+ dιX t

+ ιX t
dωt

�
= φ∗

t
d
�
α+ ιX t

ωt

�

So one need only solve the equation ιX t
ωt = −α, which by local coordinate considerations

as above can be done in a unique way, producing a vector field X t which depends smoothly on
t. So indeed we can just set f equal to the time-one map of the flow of X t . �

Remark 3.14. With sufficient care, one can localize this argument to show that for any volume
form ω = g(x1, . . . , xn)d x1 ∧ · · · ∧ d xn on a neighborhood U of the origin in Rn, there are
coordinates (y1, . . . , yn) on a smaller neighborhood U ′ of the origin so thatω|U ′ = d y1∧· · ·∧d yn.
This justifies a statement made earlier that for any volume form, the manifold is covered by
coordinate charts in which the volume form is given by the standard formula d x1 ∧ · · · ∧ d xn.
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